
www.manaraa.com

ABSTRACT

DACUS III, ROBERT WARREN. Development of a Multiphase Adjoint Capability in OpenFOAM.
(Under the direction of Paul Turinsky.)

A multiphase adjoint capability was developed in the OpenFOAM computational fluid dy-

namics platform using an existing sub-cooled nucleate boiling model developed at NC State

University. Although this solver contains a boiling model, the adjoint problem examined an

adiabatic case which solves the multiphase Reynolds Averaged Navier-Stokes equations and

k − ε turbulence equations. This capability constructs Jacobian matrices using automatic dif-

ferentiation in the forward sense. These Jacobian matrices contain discrete coefficients that

capture the dependency of all flow field variables. The Jacobian is required for the adjoint

problem derivation with respect to sensitivity analysis. The sensitivity analysis examined per-

turbations in the dispersed phase void fraction with respect to changes in the drag, lift, and

wall lubrication coefficients. Functional responses for void fraction perturbations within various

regions of interest in the flow field were calculated using the adjoint solution and compared to

the exact perturbation response. Overall, the three cases showed the adjoint problem was able

to return useful perturbation responses in various regions of interest. For the drag coefficient

case, the near-wall region adjoint response was found to approximate exact responses with 1%

relative error for a perturbation of 2% the original void fraction. For the lift coefficient case,

the bulk flow region adjoint response was found to approximate exact responses with 21% rel-

ative error for a perturbation of 0.04% of the original void fraction. The large perturbation

in lift coefficient was required in order to see any perturbations in void fraction. For the wall

lubrication coefficient case, the entrance flow region adjoint response was found to approximate

exact responses with 6% relative error for a perturbation of 0.03% of the original void fraction.

The forward computation time for the initial and perturbed cases took 13.7s while the adjoint

response calculation time for five regions of interest only took 0.2s. This shows that multiphase

adjoints using automatic differentiation for Jacobian construction can be useful with regards to

sensitivity analysis.

www.manaraa.com

© Copyright 2016 by Robert Warren Dacus III

All Rights Reserved

www.manaraa.com

Development of a Multiphase Adjoint Capability in OpenFOAM

by
Robert Warren Dacus III

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Nuclear Engineering

Raleigh, North Carolina

2016

APPROVED BY:

Nam Dinh Igor Bolotnov

Sharon Lubkin Greg DeWitt

Paul Turinsky
Chair of Advisory Committee

www.manaraa.com

DEDICATION

To Laura. Soon you’ll be stuck with me.

ii

www.manaraa.com

BIOGRAPHY

The author was born in Nashville, TN to Linda and Tad Dacus, later moving to Chattanooga,

TN. He completed his undergraduate degree at the University of Tennessee at Chattanooga

in chemical engineering. He moved to Raleigh, NC in order to pursue his Ph.D. in nuclear

engineering from North Carolina State University under the direction of Paul Turinsky.

iii

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to thank my advisor, Paul Turinsky, for his patience and help with this difficult and

oftentimes stubborn project. I would also like to thank the Rickover Fellowship staff in South

Carolina as well as coworkers at both Knolls Atomic Power Lab (KAPL) and the Nuclear

Engineering Department at North Carolina State University for their willingness to listen and

offer advice in technical and non-technical areas alike. My family and friends were instrumental

in supplying the much needed moral support and prayers necessary to complete this degree.

Finally, I’d like to thank my dear fiancé Laura Cline for her constant encouragement.

iv

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 Thermal Hydraulic Design and Simulation . 3
1.2 Adjoint Methods . 5

1.2.1 Detector Example . 6
1.2.2 Adjoint Operators . 6

1.3 Automatic Differentiation . 7
1.4 OpenFOAM . 9

Chapter 2 Physics Modeling and Methodology . 12
2.1 Continuous Forward Equations for boilEulerFoam 12

2.1.1 Forward Results Using boilEulerFoam 18
2.2 Adiabatic Multiphase Equations for the Forward Problem 25

2.2.1 Discretization of the Adiabatic Multiphase Equations 25
2.2.2 Cell Face Interpolation Schemes . 39
2.2.3 Solution Algorithm Overview . 42
2.2.4 Forward Solution Analysis . 47

Chapter 3 Automatic Differentiation Implementation in OpenFOAM 54
3.1 Templates and Operator Overloading . 55

3.1.1 FadOne Implementation and Overloading Example 56
3.2 OpenFOAM Object Hierarchy . 58
3.3 Jacobian Implementation in Basic Laplacian Solver 61

3.3.1 OpenFOAM Matrix Methodology . 66
3.4 Jacobian Implementation in boilEulerFoam . 67

Chapter 4 Adjoint Methodology and Results . 75
4.1 Adjoint Problem Derivation - Fluids vs. Physics Methods 75

4.1.1 The Method of Lagrange Multipliers . 76
4.1.2 Direct Adjoint Derivation - Implementation for Error Estimates in Drekar:CFD

[30] - [32] . 80
4.1.3 Comparison of Lagrangian and Physics Methodology 81

4.2 Derivation of Multiphase Adjoint Problem with Application to Sensitivity Analysis 82
4.3 Adjoint Sensitivity Analysis of Interphase Momentum Transfer Terms 85

4.3.1 Adjoint Sensitivity Response Prediction for Drag Interphase Momentum
Transfer Coefficient Perturbations . 87

4.3.2 Adjoint Sensitivity Response Prediction for Lift Interphase Momentum
Transfer Coefficients . 94

4.3.3 Adjoint Sensitivity Response Prediction for Wall Lubrication Interphase
Momentum Transfer Coefficients . 100

v

www.manaraa.com

Chapter 5 Conclusions and Future Work .107
5.1 Conclusions . 107
5.2 Future Work . 110

References .112

vi

www.manaraa.com

LIST OF TABLES

Table 2.1 Base case input parameters . 19
Table 2.2 zONB Dittus-Boelter Correlation Parameters 24
Table 2.3 Adiabatic Input Parameters . 47

Table 4.1 Adjoint Sensitivity Response Input Parameters 86
Table 4.2 Drag Sensitivity Response Parameters and Interphase Momentum

Models . 87
Table 4.3 Execution Times for Drag Perturbation Response 94
Table 4.4 Lift Sensitivity Response Parameters and Interphase Momentum

Models . 95
Table 4.5 Wall Lubrication Sensitivity Response Parameters and Interphase

Momentum Models . 100

vii

www.manaraa.com

LIST OF FIGURES

Figure 2.1 Representative mesh used in boilEulerFoam’s simulation of multiphase flow
through an axially symmetric pipe . 20

Figure 2.2 Pressure field results for boilEulerFoam multiphase base case 21
Figure 2.3 Degrees of sub-cooling results for boilEulerFoam multiphase base case . . . 21
Figure 2.4 Liquid velocity magnitude field results for boilEulerFoam multiphase base

case . 21
Figure 2.5 Void fraction results for boilEulerFoam multiphase base case 22
Figure 2.6 Bubble diameter results for boilEulerFoam multiphase base case 22
Figure 2.7 Interfacial area results for boilEulerFoam multiphase base case 22
Figure 2.8 Void fraction results for old version of boilEulerFoam without wall lubrica-

tion and turbulent dispersion interphase momentum transfer terms 23
Figure 2.9 Two dimensional co-located mesh showing neighbor and face indexing and

spacing for a given point P of interest . 28
Figure 2.10 Pseudo-code for the Pressure Implicit Splitting of Operators or PISO algorithm 43
Figure 2.11 Pseudo-code for the Semi-Implicit Method for Pressure-Linked Equations or

SIMPLE algorithm . 44
Figure 2.12 Pseudo-code for the combined SIMPLE and PISO algorithms, or the PIM-

PLE algorithm . 46
Figure 2.13 Vapor void fraction results for adiabatic boilEulerFoam multiphase base case 47
Figure 2.14 Lift force in the radial direction for adiabatic boilEulerFoam multiphase

base case . 48
Figure 2.15 Wall lubrication force in the radial direction for adiabatic boilEulerFoam

multiphase base case . 48
Figure 2.16 Magnitude of turbulent dispersion force for adiabatic boilEulerFoam multi-

phase base case . 48
Figure 2.17 Pressure field results for adiabatic boilEulerFoam multiphase base case . . . 49
Figure 2.18 Vapor velocity magnitude field results for adiabatic boilEulerFoam multi-

phase base case . 49
Figure 2.19 Liquid velocity magnitude field results for adiabatic boilEulerFoam multi-

phase base case . 49
Figure 2.20 Turbulent kinetic energy for adiabatic boilEulerFoam multiphase base case . 50
Figure 2.21 Turbulent dissipation for adiabatic boilEulerFoam multiphase base case . . . 50
Figure 2.22 Comparison between MT-Loop radial void profile distributions and results

from boilEulerFoam without phase change, as presented in Alali’s PhD The-
sis pp. 33-52. 52

Figure 3.1 Flow chart demonstrating object dependency of finite volume matrices (fvm)
and finite volume calculations (fvc) . 59

Figure 3.2 Steady state solution to the Laplacian equation using a constant diffusion
coefficient . 62

Figure 3.3 Solution to the perturbed Laplacian equation using the exact Jacobian matrix
calculated from automatic differentiation . 64

viii

www.manaraa.com

Figure 3.4 Solution to the perturbed Laplacian equation using the discrete Laplacian
matrix . 64

Figure 3.5 Initial, perturbed, and Jacobian calculated dispersed phase void fraction so-
lutions to the one dimensional multiphase flow problem 69

Figure 3.6 Initial, perturbed, and Jacobian calculated pressure solutions to the one di-
mensional multiphase flow problem . 69

Figure 3.7 Initial, perturbed, and Jacobian calculated dispersed phase velocity solutions
to the one dimensional multiphase flow problem 70

Figure 3.8 Initial, perturbed, and Jacobian calculated continuous phase velocity solu-
tions to the one dimensional multiphase flow problem 70

Figure 3.9 Initial, perturbed, and Jacobian calculated dispersed phase void fraction us-
ing the total variation diminishing interpolation scheme 71

Figure 3.10 Log-log plot of L2 norms verses perturbation size for dispersed phase void
fraction solutions with linear regression . 73

Figure 3.11 Log-log plot of L2 norms verses perturbation size for dispersed phase velocity
solutions with linear regression . 73

Figure 4.1 Representative mesh for the 2D pipe with radial symmetry used in the in-
terphase momentum transfer coefficient perturbation response study 86

Figure 4.2 Initial and Perturbed void profiles for a 10% increase in the drag coefficient
for axial location L = 2cm . 89

Figure 4.3 Initial and Perturbed void profiles for a 10% increase in the drag coefficient
for axial location L = 7cm . 89

Figure 4.4 Initial and Perturbed void profiles for a 10% increase in the drag coefficient
for axial location L = 15cm . 90

Figure 4.5 Exact perturbations ∆~αg and Jacobian approximated ∆α̃g for pipe mesh cell
indices for perturbed drag coefficients . 90

Figure 4.6 Log-log plot of log(∆CD) vs. log(||∆~αg −∆α̃g||2) and linear regression 91
Figure 4.7 Exact and adjoint responses with respect to drag coefficient perturbations

for various ~Q∗ regions of interest . 92
Figure 4.8 Initial and Perturbed void profiles for a 500% increase in the lift coefficient

for axial location L = 2cm . 95
Figure 4.9 Initial and Perturbed void profiles for a 500% increase in the lift coefficient

for axial location L = 7cm . 96
Figure 4.10 Initial and Perturbed void profiles for a 500% increase in the lift coefficient

for axial location L = 15cm . 96
Figure 4.11 Exact perturbations ∆~αg and Jacobian approximated ∆α̃g for pipe mesh cell

indices . 97
Figure 4.12 Log-log plot of log(∆CL) vs. log(||∆~αg −∆α̃g||2) and linear regression 98
Figure 4.13 Exact and adjoint responses with respect to lift coefficient perturbations for

various ~Q∗ regions of interest . 99
Figure 4.14 Initial and Perturbed void profiles for a 75% increase in the wall lubrication

coefficient for axial location L = 2cm . 101
Figure 4.15 Initial and Perturbed void profiles for a 75% increase in the wall lubrication

coefficient for axial location L = 7cm . 102

ix

www.manaraa.com

Figure 4.16 Initial and Perturbed void profiles for a 75% increase in the wall lubrication
coefficient for axial location L = 15cm . 102

Figure 4.17 Exact perturbations ∆~αg and Jacobian approximated ∆α̃g for pipe mesh cell
indices . 103

Figure 4.18 Log-log plot of log(∆CW) vs. log(||∆~αg −∆α̃g||2) and linear regression . . . 104
Figure 4.19 Exact and adjoint responses with respect to wall lubrication coefficient per-

turbations for various ~Q∗ regions of interest 105

x

www.manaraa.com

Chapter 1

Introduction

In computational engineering, there is often a tension between predicting physical phenomena

at high levels of accuracy and maintaining a reasonable computational resource requirement.

Oftentimes, the interests of accuracy and resource demand are directly opposed, and designers

find themselves sacrificing one advantage for another. In many areas of engineering design, pre-

vious use of low fidelity models has proven acceptable for satisfying given design requirements,

but the importance of efficiency and safety as they relate to complicated geometry and tran-

sients necessitates powerful and accurate methods.

Thermal hydraulic predictions of flow regimes within nuclear reactor cores require signifi-

cant computational resources and accuracy to ensure that the core design does not violate the

thermal limits of materials. Nuclear Regulatory Commission (NRC) requirements dictate the

accurate simulation of plant performance during accident scenarios. A wide array of models at

various levels of complexity are available to satisfy these design requirements.

Direct numerical simulation (DNS) models resolve flow field phenomena at the smallest

physical and temporal length scales. These simulations are able to deterministically calculate

velocity and pressure fields of turbulent flow but at a high computational cost. Multiphase com-

putational fluid dynamics (CFD) can calculate three dimensional velocity and pressure fields

for turbulent flow but require correlations for understanding the interactions between the fluid

and vapor phases as well as averaging techniques to handle turbulence. These Reynolds Aver-

age Navier Stokes (RANS) methods, which average the time dependent behavior of turbulent

oscillations, are able to approximate system wide pressures and velocities but are unable to

determine local eddy configurations at the same level of detail as DNS methods.

Other less sophisticated methods like drift-flux or homogeneous equilibrium mixture model-

1

www.manaraa.com

ing in conjunction with subchannel methods are often popular for system wide simulations due

to their significantly lower computational burden. These methods employ area averaging and

are often one dimensional in space, approximating missing dimensions’ effects via correlations,

and therefore have no ability to resolve local flow field phenomena that may be pertinent to

thermal hydraulic design.

While one dimensional subchannel methods are useful in system wide simulations, emerging

problems in nuclear design and safety require resolving three dimensional flow fields for complex

geometry and transients. DNS techniques can resolve these fields, but the resource requirements

for a single subchannel are enormous. For this reason, multiphase CFD has become a valuable

computational capability for predicting flow characteristics as they relate to applications such as

nuclear reactor safety and mixing phenomena around spacer grids within fuel assemblies [1][2].

Multiphase CFD still requires closure relationships for both the effects of turbulence as well as

the transfer of mass, momentum, and energy between phases. Understanding the sensitivity of

the parameters used in closure relationships is important for ensuring accuracy, but performing

rigorous sensitivity analysis is computationally expensive.

Adjoint mathematics have been utilized for reactor physics and fluid dynamics applications

with respect to verification, sensitivity analysis, adaptive mesh refinement, and optimization [3]-

[5]. The use of adjoint methods can predict the sensitivities of a variety of physical parameters

within a given problem, and they have been shown by Cacuci to return sensitivity responses for

first and second order methods with significantly fewer computations than normal “large-scale”

methods [6]. Adjoints have also been used for the optimization of flow geometry constrained to

minimize pressure drop or drag for ducted flow. As the complexity of multiphase CFD meth-

ods increases, the demand for accurate verification tools and improvements in computational

efficiency also increases, making the development of adjoint capabilities an attractive option.

This thesis builds a multiphase adjoint capability within the open source CFD code Open-

FOAM. It develops a multiphase adjoint capability, the first of its kind, for the Eulerian-Eulerian

two field, two phase sub-cooled nucleate boiling code boilEulerFoam developed by Dr. Nam

Dinh of NC State Univerisity in OpenFOAM version 2.1.1 [7]. BoilEulerFoam capability in-

cludes forward solutions to two-field, steam-water momentum, mass, and energy equations with

inter-phase momentum and mass transfer, wall boiling, interfacial area transfer, and liquid phase

turbulence.For reference, the term “forward” is used to describe the problem set for which the

adjoint capability is developed, as opposed to the term “adjoint” which describes the problem

set used for functional response calculations. This thesis will develop a first look application of

appropriate adjoint methodology within the two-field, two-phase fluid model with application

2

www.manaraa.com

to sensitivity analysis.

This thesis covers three primary areas governing the development of multiphase adjoint

capability. These areas are 1) the physics modeling of the thermal hydraulics computational

methodology, 2) the computer science of the development of automatic differentiation tools

within OpenFOAM, and 3) the mathematics of the adjoint problem definition and derivation.

A final section draws conclusions and lays out future work for multiphase adjoint development.

1.1 Thermal Hydraulic Design and Simulation

For safe and efficient operation of a thermal nuclear power core, a fluid must effectively cool the

reactor to appropriate temperatures in order to maintain the functional integrity of materials

without compromising the configuration necessary to sustain a self-propagating chain reaction

of the nuclear fuel. It is necessary for designers to understand in detail the behavior of system

wide pressures, void fractions, and velocities and how they affect overall plant performance as

well as local fluid behavior that can influence the characteristics of materials’ corrosion and

neutron flux. A wide variety of numerical tools are necessary in order to properly design and

simulate a nuclear reactor and its plant and safety components. Thermal hydraulic tools present

solutions to mass, momentum, and energy balance equations for single or multiphase fluid flow.

The level of simplification and estimation of these equations coincides with the demand for

accuracy that a designer requires.

One dimensional or three dimensional techniques for solving the two phase mixture equa-

tions are typical for basic system wide simulations. Design codes such as TRACE, RELAP and

TRAC implement these methods for best-estimate thermal hydraulic design [8][9]. Correlations

are chosen in order to close the six-equation, two-phase system describing the mass, momen-

tum, and internal energy of a flow field. For simulation and analysis focused on core internal

thermal hydraulic behavior, either closed-channel methods or sub-channel methods as incor-

porated by COBRA and VIPRE codes are employed [10][11]. The two-phase drift flux model,

which considers only mixture momentum instead of separate phasic momentum equations and

uses a correlation for determining the relative velocity of phases, may be employed for simi-

lar simulation conditions. Alternatively, the homogeneous equilibrium mixture (HEM) model

assumes that both phases are at saturation and moving at the same velocity; therefore it is

only necessary to solve for mixture momentum, mass, and energy. Although these methods are

efficient, they typically are unable to resolve the flow mechanics near to the wall of the system

where oftentimes safety criteria such as critical heat flux (CHF) are a concern.

3

www.manaraa.com

For simulating the wall resolved effects of turbulent flow, multiphase computational fluid

dynamics methods can be used to investigate flow phenomena that cannot be resolved by using

simplified equations. In most cases, momentum, mass, and energy are solved explicitly for each

phase rather than using correlations for relating pressure and velocity. Equations for turbulent

kinetic energy and turbulent dispersion are also necessary in order to describe the Reynolds

stresses on the system for Reynolds Averaged Navier Stokes (RANS) methods. Models such as

k-ε or k-ω are typical for RANS equations and use correlations to describe the turbulence ef-

fects near the wall. As a consequence, the averaging technique used by RANS loses information

regarding small eddy formation and dissipation within the flow field. Large eddy simulation

(LES) can be used in its stead in order to retain the turbulence induced time dependent pertur-

bation in the flow field. However, this is often computationally limiting due to the need for finer

spatial meshing and time dependent ensemble average solutions. Codes such as STAR-CCM+,

HYDRA-TH, and OpenFOAM employ RANS and LES methods for single and multiphase mod-

els [12][13][14].

DNS methods have the capability of resolving all micro scales of fluid flow. These methods

employ a variety of techniques for tracking the interface between liquid and vapor. Examples

are front tracking and level set methods which both have the capability of simulating individual

bubble or droplet interactions within a fluid. In this case, no wall models or correlations are

necessary due to the fact that the length scale of individual bubbles can be resolved. The com-

putational resources needed to implement these methods for a single reactor core flow channel

containing thousands of bubbles are vast, and DNS techniques are not typically used for large

scale design. Computational codes such as PHASTA and FTC3D employ these DNS methods

[15] [16]. They have proven useful for gaining insights and developing closure relationships for

LES and RANS models, e.g. bubble lift and drag forces.

All of these fidelity levels are used in concert with one another to ensure proper design of a

nuclear reactor core and its supporting thermal hydraulic systems. Within each method, various

closure models or equation parameters can help improve the physical accuracy of the problem

at the cost of additional computational resources. It is often difficult to resolve large geometries

such as spacer grids with mixing vanes using DNS methods due to the computational cost.

However, HEM and drift flux models cannot resolve the three dimensional flow behavior along

the wall. Therefore, multiphase CFD has become a favorable choice with regards to complex

boiling problems.

4

www.manaraa.com

1.2 Adjoint Methods

An adjoint is a mathematical construct that mirrors behavior found in physical or forward

problems and helps to describe the importance of functionals with respect to a specific quan-

tity of interest. Adjoint solutions can be thought of as an importance weighting function that

describes the spatial and temporal importance of a system response. It can be used to quantify

the importance of functional responses such as the sensitivities of closure parameters, drag, or

the effect of localized boundary conditions.

The derivation of an adjoint requires linear operators. This thesis considers the solution to

pressure implicit multiphase flow equations, which is highly nonlinear. A common objection to

adjoint methods is that they require linear operators to predict functional responses. Nonethe-

less, to obtain response perturbations, the adjoint approach can be accurate. Linearization

techniques are required to build an adjoint problem, but these are often the same techniques

used in Newtonian iteration methods.

Adjoint methods have found widespread use in the field of radiation transport due to its

usefulness in perturbation analysis [17] - [19]. For small changes in specific parameters, adjoint

solutions can describe the influence of perturbations within specific regions of interest without

needing to re-solve the forward system of equations. In neutronics, these perturbed parameters

include material properties, source distributions, and cross sections. In thermal hydraulics, per-

turbed parameters include material properties, closure relationships, and wall models [20] - [24].

Other adjoint applications include solution verification when exact correlations for compli-

cated multiphase flow phenomena are unavailable. Adjoint methods are also used for adaptive

grid refinement and provide error controlled localized grid refinement as an attempt to reduce

the numerical error [25]. Adjoints have also been used by Othmer, Mani, and Mavriplis to

describe the sensitivities of topological surface sensitivities for steady and unsteady systems

[26][27].

Previous use of adjoint methods have primarily applied only to single phase CFD. With

regards to multiphase CFD, the majority of adjoint capability has been limited to creeping

flow with application to sub-surface oil reservoir optimization [28][29]. These models attempt to

optimize design characteristics for the extraction of oil-water mixtures from porous media. They

ignore inertial effects and use an empirical relationship between pressure drop and flow velocity.

Multiphase flow in nuclear reactor design is highly turbulent and these empirical relationships

are not appropriate for the CFD models examined by this thesis, therefore this thesis continues

5

www.manaraa.com

adjoint development to include full solutions of the multiphase momentum equations.

1.2.1 Detector Example

In adjoint problems, one has the freedom to describe boundary conditions and source terms

such that the evaluation of a functional yields a desired quantity of interest. A simple example

is the detector response problem which is applicable to both thermal hydraulics and neutronics

problems. In this problem, the response of a detector is desired as a function of the location of

a source term. Typically, moving a source term anywhere within the geometry of the problem

requires the equations to be solved a second time. Adjoint methods present an alternative ap-

proach. An adjoint problem is solved once and then its solution can be used multiple times to

describe responses for various source term locations.

Starting with the following forward and adjoint linear equations

A [φ] = Q, A∗ [φ∗] = Q∗ (1.1)

the adjoint operator A∗ is defined such that the following inner product equality holds for all

φ and φ∗ within the solution space

〈A [φ] , φ∗〉 = 〈A∗[φ∗], φ〉 (1.2)

Ensuring equality of (1.2) imposes restrictions on the initial and boundary conditions of the

adjoint problem. If the response function desired is defined as R = 〈Σ, φ〉 then one can provide

an exact evaluation of the response when the adjoint source term is given by Q∗ = Σ according

to

〈Σ, φ〉 = 〈Q∗, φ〉 = 〈A∗[φ∗], φ〉 = 〈A [φ] , φ∗〉 = 〈Q,φ∗〉 (1.3)

Using (1.3), one is able to determine the response of a detector for various Q locations

without having to solve for φ each time Q is moved. Instead, φ∗ is determined once and then

used to provide the response for any value of Q in the solution space. This method of func-

tional response prediction with respect to adjoint solutions can provide a means for performing

sensitivity analysis for a wide array of perturbations, or for evaluating responses for various

boundary conditions, etc.

1.2.2 Adjoint Operators

For each linear operator contained in a partial differential equation, there is a subsequent ad-

joint operator that describes the appropriate adjoint behavior. Using the nomenclature from

6

www.manaraa.com

(1.1), operators are said to be self adjoint if A∗ = A. Second derivatives and constant mul-

tipliers are examples of self adjoint operators while first order derivatives are not self adjoint [17].

There are several ways to derive adjoint operators for a given system of equations. A physical

adjoint is defined as an operator that is derived from the continuous set of forward equations.

One constrains the adjoint to satisfy equation (1.2) and, using integration by parts, derives an

appropriate adjoint operator. The application of necessary boundary conditions and initial con-

ditions ensures that the equality in (1.2) holds. Another approach to deriving physical adjoint

operators uses cost functions and the method of Lagrange multipliers. This method “adjoins”

a Lagrange multiplier to a general cost function for a given problem. One can then describe the

maxima and minima of this cost function without needing to substitute the solution into the

cost function.

A third method for deriving adjoint operators uses the coefficient matrix from the linear

solve of a discretized system. Since the adjoint of a matrix operator is its conjugate transpose,

then for a discretized forward matrix A operating on the forward solution vector ~φ, we have

the following forward and adjoint problem

A [φ] = Q, AT [φ∗] = Q∗ (1.4)

This method requires no integration by parts or Lagrange multipliers and is only applicable to

linear problems. This is called a mathematical or discrete adjoint. This is the most common

continuous adjoint equation formulation used in reactor physics applications. Most adjoint

operators are typically discretized using the same methodology as the forward problem, and

similar solution techniques are applied to both systems of equations. There is, however, no

guarantee that the discretized physical adjoint solution will be the same as the mathematical

adjoint solution. If the problems are defined correctly, the functional as predicted by the adjoint

solutions should be the same for both the physical and mathematical problems within the

numerical methods accuracy.

1.3 Automatic Differentiation

Adjoint techniques are only applicable to linear problems. Multiphase CFD equations, however,

are highly nonlinear. In order to linearize these equations, a simple Taylor expansion of a given

nonlinear operator F[~φ] = ~d can be written to first order accuracy as

∂F

∂~φ

∣∣∣∣
~φo

(
~φ− ~φo

)
= F[~φ]− ~d

7

www.manaraa.com

the partial derivative
∂F

∂~φ
defines the Jacobian matrix

∂F

∂~φ
=

∂F1

∂φ1

∂F1

∂φ2
. . .

∂F1

∂φn

∂F2

∂φ1

∂F2

∂φ2
...

. . .
∂Fn
∂φ1

∂Fn
∂φn

This Jacobian matrix is often present in Newton methods for finite-element solutions to the

Navier-Stokes equations [30]. For these methods, it is straightforward to linearize the problem

and obtain an adjoint capability. OpenFOAM, however, uses a finite volume based solver with

pressure implicit splitting of operators (PISO) and contains no Jacobian. In order to linearize

the discrete equations, this thesis developed an automatic differentiation (AD) capability in

the forward sense that expanded on existing capability and made AD objects available to all

operations pertaining to the subcooled nucleate boiling model.

Automatic differentiation is a method with which derivatives of functions can be calculated

automatically based on existing computational algorithms. AD includes a forward mode and a

reverse mode for calculating derivatives or gradients. The forward mode uses the chain rule in

order to explicitly calculate required derivatives. Operators can be overloaded such that deriva-

tives can be calculated exactly according to the called algebraic functions.

As an example, we motivate an example fro Rall et. al.[33]. Let us introduce a function

f(~x) = f(x1, . . . , xn). Let tn+i with i ∈ (1, . . . ,m) be a set of intermediate values generated

as a part of the algorithm used to determine f . Using the chain rule, we can determine the

derivative of an intermediate value t according to

∂tj
∂xi

=
∑
k∈Kj

∂ti
∂tk

∂tk
∂xi

for j = n+ 1, n+ 2, . . . , n+m and where Kj is the k < i set of indices that ti depends on tk.

When the final operation tn+m returns f , the derivative of the algorithm is also returned. Note

that the number of operations required to calculate ∇f is roughly n ·m using the forward mode

of automatic differentiation.

The reverse mode of automatic differentiation calculates derivatives by evaluating the func-

tion f and then working backwards such that

8

www.manaraa.com

∂fi
∂tk

=
∑
j∈Ik

∂fi
∂tj

∂tj
∂tk

,

for k = n + m,n + m − 1, . . . , i + 1 and where Ik is the k > j set of indices where tj depends

on tk. This requires storage of all
∂tj
∂tk

derivatives required to calculate a derivative of f . The

final
∂fi
∂tn+1

will return the derivative with respect to the first independent variable, which is

often space or time. The gradient of a product operator was shown by Griewank to require
1
2n

2 non-trivial multiplications using the forward mode and 3n− 3 using the reverse mode [34].

The reverse mode is therefore said to be much more efficient than the forward mode, however,

storage of intermediate operations can make the reverse mode more expensive with regards to

memory. Due to simplicity and the need to store full Jacobian matrices as explained in section

3.3.1, the forward mode of automatic differentiation was selected for use in the derivation of

multiphase adjoint capability in OpenFOAM.

Various black-box AD tools are available, such as ADIFOR, TAMC, TAF, and Tapenade

[35]. These methods employ AD by either overloading existing operators or performing source

code transformations. Due to OpenFOAM’s object oriented nature and the existing work done

by Jasak, AD capability was coded directly into OpenFOAM and takes full advantage of its

hierarchy, operators, and templates. This capability is termed FadOne, a first look at FOAM

AD, and is used for the construction of Jacobian matrices necessary for adjoint calculation.

1.4 OpenFOAM

OpenFOAM is an open source, community based computational fluid dynamics software de-

veloped in C++. First called FOAM (Field Operations and Manipulations), it was created by

Dr. Hrvoje Jasak and Dr. Henry Weller at Imperial College in London during the late 1980s as

an object oriented alternative to existing CFD methodology. The official OpenFOAM release

and open source distribution is handled by the OpenFOAM Foundation. The FOAM-Extend

project is a subset of OpenFOAM that formalizes the open spirit of collaboration and makes a

wide variety of CFD capability available to the OpenFOAM community.

OpenFOAM was selected as the platform for multiphase adjoint development due to its open

source nature and the subsequent unlimited access to source code. Thermal hydraulic develop-

ment groups traditionally have had the option of either developing codes in house, or they have

licensed the use of commercial off the shelf (COTS) software such as ANSYS CFX or FLOW-

3D. Both options are considered expensive with respect to development time or licensing costs.

9

www.manaraa.com

The CFD utility OpenFOAM is regarded as “open source” in that all source code pertaining

to releases are published in full and are available to any user of OpenFOAM without charge.

Subsequent user demand drives further development of OpenFOAM, and additional releases

are made available per the requests and contracts of the OpenFOAM community. As a result,

OpenFOAM can be considered a middle ground between full in-house CFD code development

and the licensing of COTS. OpenFOAM’s primary advantage over COTS is its lack of upfront

licensing costs as well as full user access to all source code. OpenFOAM also has substantial

professional development, and does not require the development time effort of in-house codes.

In order to tailor OpenFOAM to specific problems, there is a man-hour requirement associated

with training and development, and effective use of OpenFOAM may also necessitate support

and documentation licenses from external companies such as Engys or OpenCFD.

The C++ methodology used in OpenFOAM is a powerful and consistent representation of

object oriented programming. C++ encapsulation in OpenFOAM can be thought of as a toolkit

of building blocks that, when assembled correctly, can be used for many CFD applications with-

out a detailed understanding of how each building block functions. The primary functionality

of OpenFOAM objects is encapsulated underneath easily implemented code that reads like the

equation itself. For example, the scalar transport equation is as follows

∂T

∂t
+∇ ·

(
T ~φ
)

= ∇ · (D ∇T) (1.5)

In OpenFOAM C++, this same equation is written as

solve(

fvm::ddt(T) + fvm::div(phi, T)

== fvm::laplacian(D, T)

);

where OpenFOAM uses the face interpolated flux φ rather than velocity according to finite

volume methods.

Systems of equations in OpenFOAM closely resemble the solved equations which helps the

readability of the code. OpenFOAM also utilizes advanced templates and polymorphism so that

the variable T from the previous example can be any type of parameter, such as a vector or

tensor, and the functionality remains the same. This encapsulation and polymorphism is what

helps make OpenFOAM such a powerful platform for CFD development.

10

www.manaraa.com

The OpenFOAM community has previously performed verification case studies for single

phase and multiphase, adiabatic and heated OpenFOAM applications and has demonstrated

the codes initial viability as a supplement to existing COTS CFD software [36]. Dr. Nam Dinh

and his research team have enhanced existing multiphase capability available in OpenFOAM

release 2.2.1 to include a subcooled nucleate boiling model called boilEulerFoam. Recent devel-

opment has added wall lubrication, turbulent dispersion, and interfacial area transfer equations

to the existing model. This thesis uses OpenFOAM release 2.2.1 and the most recent version

of boilEulerFoam as the bases for adjoint development.

11

www.manaraa.com

Chapter 2

Physics Modeling and Methodology

This chapter explains the subcooled nucleate boiling methodology within the OpenFOAM solver

boilEulerFoam. This solver simulates sub-cooled nucleate boiling and multiphase behavior by

implementing an Eulerian-Eulerian two-field, two-phase flow model. This model considers each

phase to be inter-penetrating the other in two distinct fields with appropriate interphase momen-

tum and mass transfer terms. Void fractions are weighted according to a conditional averaging

technique as developed by Weller [14]. The effect of turbulence on the flow field is simulated

using a Reynolds Averaged Navier-Stokes (RANS) k-ε model and appropriate wall functions[53].

This section examines the forward multiphase RANS equations solved by boilEulerFoam,

discusses some initial results using the boilEulerFoam solver, and examines some basic verifica-

tion cases including a correlation for the onset of nucleate boiling. It also describes in detail the

discretization and solution procedure for an adiabatic case to be used for adjoint construction.

2.1 Continuous Forward Equations for boilEulerFoam

The following are the continuous equations implemented in the sub-cooled boiling model.

Continuity

∂αk
∂t

+∇ · (αk~uk) =
Γki − Γik

ρk

αl = 1− αg

where g and l represent the dispersed vapor and continuous liquid phases respectively, and α,

ρ, and ~u represent the phase volume fraction, density, and velocity. Γki denotes the evaporation

or condensation rate per unit volume from phase k to phase i.

12

www.manaraa.com

Momentum

∂αk~uk
∂t

+∇ · (αk~uk~uk) =

−∇ ·
(
αk
(
Rk + Rt

k

))
− αk
ρk
~∇p+ αk~g +

~Mk

ρk
+

Γki~ui − Γik~uk
ρk

where ~Mk denotes the interphase momentum transfer for phase k per unit volume. The stress

tensor Reff
k = Rk + Rt

k is given by

Reff
k = Rk + Rt

k = −
(
νk + νtk

)(
∇~uk + (∇~uk)T −

2

3
I∇ · ~uk

)
+

2

3
Ikk

where kk is the turbulent kinetic energy for phase k as described by the k-ε equations. The in-

terphase momentum transfer term ~Mk contains expressions describing drag, lift, virtual mass,

turbulent dispersion, and wall lubrication. Since interfacial momentum is the transfer of mo-

mentum from the dispersed phase to the continuous phase, we have ~Mg = − ~Ml. We therefore

describe the interfacial momentum transfer as it relates to the dispersed phase.

The expression for the drag force interphase momentum transfer according to Ishii-Zuber is

as follows [37]

~MD
g = −CD

3

4

ρl
DS

αg ||~ug − ~ul|| (~ug − ~ul)

with the following correlations and constants

CD = max

(
24 + 3.6(Rebm)0.687

Rebm
, 0.44

)
Rebm = −ρl ||~ug − ~ul||Ds

µm

µm = µl

(
1− αg

0.52

)−1.3µ∗

µ∗ =
µg + 0.4µl
µg + µl

The above Ishii-Zuber drag model uses the mean bubble diameter DS calculated from the

definition of interfacial area and assumes that the bubbles are spherical, αg < 0.52, and

0.2 < Reb < 1.0 × 105 [37]. This closure relationship simulates the drag experienced by the

dispersed phase as it travels through the continuous phase. Extensive research has examined

the accuracy of drag closure relationships, and boilEulerFoam has the option of using several

models developed by Wen-Yu, Ergun, Schiller-Naumann, Gibilaro, and Syamlal-OBrien [38] -

13

www.manaraa.com

[40]. For simplicity, this thesis keeps the lift force coefficient constant CL = 0.01

The expression for the lift force interphase momentum transfer term is as follows

~ML
g = CLαg (~ug − ~ul)× (∇× ~ul)

For two dimensional pipe flow, lift forces affect the radial void distribution and can either push

bubbles towards or away from the wall. This behavior mimics observations seen in experiments

and is thought to be related to the liquid velocity at the surface of a bubble. For small spherical

bubbles, the lift force pushes bubbles towards the wall of a pipe. boilEulerFoam has the capa-

bility of accounting for bubble size and deformation using the Rusche and Tomiyama models

to calculate the lift force coefficient [41][42].

The expression for the virtual mass interphase momentum transfer term is as follows

~MVM
g = −Cvmαgαlρl

(
D~ug
Dt
− D~ul

Dt

)
where Cvm = 0.5 is the virtual mass coefficient. Virtual mass is the interfacial momentum force

that resists the acceleration of bubbles as they pass through the continuous phase. Since these

phases are considered to be interpenetration, virtual mass attempts to account for the physical

space left behind by a bubble as it travels through a liquid. For steady state solutions where

the dispersed phase is no longer accelerating, ~MVM
g = 0.

D

Dt
is the total material derivative

and is given by

Dφ

Dt
=
∂φ

∂t
+ ~u · ~∇φ

The expression for the turbulent dispersion interfacial momentum transfer term is as follows

~MT
g = −Ctdρlkl∇αg

where Ctd = 0.01 is the turbulent dispersion coefficient. Turbulent dispersion force describes

the force that resists the aggregation of void fraction as a function of turbulent kinetic energy.

boilEulerFoam has the capability of using the Burns and Gosman models which describes the

relationship of turbulent dispersion and velocity rather than turbulent kinetic energy [43][44].

14

www.manaraa.com

The expression for the wall lubrication interphase momentum transfer term is as follows

~MWL
g = CWαgρl |~ur − (~ur · ~nw)~nw|2

where ~ur = ~ug − ~ul is the relative velocity. |~ur − (~ur · ~nw)~nw| is the projection of the relative

velocity parallel to the wall normal vector nw. According to Frank, Cw is defined as

CW = Cwl max

(
0,

(1− yr)
Cwdywy

p−1
r

)
with yw defined as the distance to the wall, Cwd = 6.8, p = 1.7, and the ratio yr defined as

yr =
yw

CwcDS

with Cwc = 10.0. The wall lubrication force describes the experimental phenomenon that pushes

bubbles slightly off of the wall [46].

Energy

It is assumed that all vapor is at saturation, and transfer from the vapor to the liquid phase is

solely due to condensation. Therefore, the energy conservation equation is written for the liquid

phase only in terms of specific enthalpy

∂αlhl
∂t

+∇ · (αlhl~ul) = − 1

ρl
∇ · [αl (~ql + ~ql,t)] +

αl
ρl

Dp

Dt
+

Γlghg,sat − Γglhl
ρl

+
q′′wA

′′
w

ρl

where hl denotes the liquid specific enthalpy, ~ql and ~ql,t represent the molecular and turbulent

heat fluxes for the liquid phase, A′′w represents the wall contact area per unit volume, and q′′w

represents the wall heat flux density. The molecular and turbulent heat fluxes are given by

~ql,(t) = −
λl,(t)

cpl
~∇hl

where λ denotes thermal conductivity and cp denotes specific heat.

Interfacial Area

Interfacial area is defined as the surface area of void bubbles per unit volume and is used

to calculate the mean bubble diameter according to

ai =
6αg
DS

15

www.manaraa.com

The transport of interfacial area is modeled according to

∂ai
∂t

+∇ · (ai ~ug) = −2

3

ai
αgρg

Γlg + ΦBB + ΦBC + ΦNUC

where ΦBB, ΦBC , and ΦNUC are the bubble breakup, coalescence, and nucleation terms respec-

tively. The nucleation term is relevant in near wall cells only. boilEulerFoam uses the Hibiki

and Ishii model to describe the bubble sink and source terms [37]. The interfacial area transfer

equation is used to solve for the bubble diameter which is required by the interfacial momentum

transfer models.

Turbulence

Turbulence modeling follows typical RANS k-ε methodology where the effective viscosity of the

liquid phase is given by the sum of the molecular and turbulent viscosities.

νeff
l = νl + νtl

The turbulent viscosity νtl for multiphase flows is equal to the sum of shear induced and bub-

ble induced turbulent viscosities. Using this methodology, the equation for turbulent viscosity

is as follows

vtl = Cµ
k2
l

εl
+

1

2
CµbDSαg||~ug − ~ul||

where Cµ = 0.09 and Cµb = 1.2.

The effective viscosity of the vapor phase is dependent on the effective liquid viscosity and

is given by

νeff
g = νg + C2

t v
t
l

where Ct is the turbulent response coefficient defined by the ratio of velocity fluctuations of the

dispersed phase to the continuous phase, or

Ct =
u′g
u′l

By assumption, the turbulence of the vapor phase depends on the turbulence of the liquid

phase. Therefore, only the continuous phase turbulence k - ε equations are solved.

∂αlkl
∂t

+ (~ul · ∇)αlkl −∇ ·
(
νeff
l

σk
~∇kl
)

= αlPl − αlεl

16

www.manaraa.com

∂αlεl
∂t

+ (~ul · ∇)αlεl −∇ ·
(
νeff
l

σk
~∇ε
)

=
εl
kl
αl (C1Pl − C2εl)

with the following constants

C1 = 1.44

C2 = 1.92

σk = 1.0

σε = 1.3

The kinetic energy production term Pl is defined as

Pl = 2νeff
l

(
∇~ul · dev

(
∇~ul + (∇~ul)T

))
Summary

The unknown variables to be solved for include

1. Void fraction αg (or αl)

2. Liquid velocity ~ul

3. Vapor velocity ~ug

4. Liquid specific enthalpy hl

5. Liquid turbulent kinetic energy kl

6. Liquid turbulent dissipation εl

7. Pressure p

8. Interfacial area ai

totaling 8 dependent variables. The given equations by the forward two-field, two-phase model

include

1. Liquid mass conservation equation

2. Vapor mass conservation equation

3. Liquid momentum conservation equation

4. Vapor momentum conservation equation

5. Liquid energy conservation equation

17

www.manaraa.com

6. Liquid turbulent kinetic energy equation

7. Liquid turbulent dissipation equation

8. Interfacial area transport equation

totaling 8 equations which closes the system.

2.1.1 Forward Results Using boilEulerFoam

The following section contains results of a base case sub-cooled nucleate boiling simulation as

predicted by boilEulerFoam.

Flow Field Distributions

The base case is a vertical two dimensional axi-symmetric pipe geometry provided with the

original boilEulerFoam source code. It demonstrates the solvers ability to simulate void gen-

eration and its impact on flow field predictions for constant heat flux. Table 2.1 contains the

input flow field and geometry parameters for the base case simulation.

Table 2.1: Base case input parameters

Parameter OF Variable Value

Inlet Pressure p 4.5 MPa
Inlet Velocity Uwater 1.0 m/s
Inlet Sub-cooling Tsub 26.6o C
Inlet Void alphaair 0
Wall Heat Flux qWall 3.8× 102 kW/m2

Pipe Length L 2 m
Pipe Radius r 1.2 cm
Lift Coefficient Cl 0.01
Virtual Mass Coefficient Cvm 0.5
Turbulent Dispersion Coefficient Ct 0.01
Minimum Bubble Diameter Do 0.1 mm
Maximum Bubble Diameter D1 1 mm
Frank Wall Model Coefficients Cwc, Cwd, p 10.0, 6.8, 1.7
Drag Model Ishii-Zuber

Figure 2.1 illustrates the mesh used in the axi-symmetric OpenFOAM multiphase simula-

18

www.manaraa.com

tion. The pipe models vertical flow and ~g acts in the negative z direction, but the mesh is shown

horizontally for convenience. The top boundary condition is a solid wall with zero slip and a

uniform profile heat flux. Heat loss is ignored. The bottom boundary condition is a line of rota-

tional symmetry that runs through the center of the pipe. The axi-symmetric pipe mesh used

a wall spacing ratio such that
∆wall

∆symm
= 0.25. There were a total of 3,171 grid nodes within the

mesh, and spacing in the axial direction was uniform. The Figures containing computational

results are scaled radially by a factor of 20 such that pertinent field information is visible.

Figure 2.1: Representative mesh used in boilEulerFoam’s simulation of multiphase flow
through an axially symmetric pipe

Figures 2.2 through 2.7 contain the axi-symmetric simulation results for various flow phe-

nomena as predicted by boilEulerFoam.

19

www.manaraa.com

Figure 2.2: Pressure field results for boilEulerFoam multiphase base case

Figure 2.3: Degrees of sub-cooling results for boilEulerFoam multiphase base case

Figure 2.4: Liquid velocity magnitude field results for boilEulerFoam multiphase base case

20

www.manaraa.com

Figure 2.5: Void fraction results for boilEulerFoam multiphase base case

Figure 2.6: Bubble diameter results for boilEulerFoam multiphase base case

Figure 2.7: Interfacial area results for boilEulerFoam multiphase base case

21

www.manaraa.com

Figure 2.8: Void fraction results for old version of boilEulerFoam without wall lubrication
and turbulent dispersion interphase momentum transfer terms

Figure 2.2 indicates a linear pressure drop of 15 kPa from the inlet of the pipe to its exit.

Because the flow is friction dominated, this is an expected result. In Figure 2.3, the fluid enters

at the prescribed inlet sub-cooling value and increases in temperature first along the wall. The

temperature continues to increase until the bulk flow is only several degrees below saturation.

Initially, the radial velocity along the boundary is distributed according to typical turbulent

flow behavior as prescribed by the k-ε turbulence model, shown in Figure 2.4. However, as the

void fraction increases, the differences in density between the liquid and vapor phases result

in an accelerative buoyancy force, and the location coinciding with increased void fraction also

increases in velocity magnitude.

According to the wall boiling model, void is only produced in the near wall cell values shown

in Figure 2.5. This is consistent with the initial void production near the wall for L = 0.5 m.

As boiling continues, the interfacial forces present dictate the distribution of dispersed vapor

shown in Figure 2.5. Wall lubrication, according to the Frank model, ensures that void is pushed

away from (negative ~r direction) the near wall region. Turbulent dispersion acts on the larger

gradients of αg and resists sharp changes in void fraction. Drag resists the propensity for the

dispersed phase to move faster than the continuous phase due to differences in density. All

of these forces in conjunction with the transport of mass and momentum result in the void

distribution shown in Figure 2.5.

The mean bubble diameter shown in Figure 2.6 is the largest in regions with higher con-

centration of void and is directly related to the interfacial area of the solution, shown in Figure

2.7. Bubble diameter is used in interphase momentum transfer calculation and will also have

22

www.manaraa.com

an impact on the overall void distribution.

Figure 2.8 shows results from a previous version of boilEulerFoam that does not include

wall lubrication and turbulent dispersion interphase momentum transfer. In the absence of wall

lubrication, there is no wall normal force to counteract lift and the system will not converge.

Because of this, the lift force in Figure 2.8 is reversed, and the void congregates in a region off

of the wall in a way that is likely unphysical.

From the results shown in Figures 2.5 and 2.8, it can be said that the void fraction dis-

tribution is strongly dependent on interphase momentum transfer closure relationships. Future

development of boilEulerFoam’s subcooled nucleate boiling capability must rely on detailed

numerical studies and experimental comparisons to ensure that the distribution shown in Fig-

ure 2.5 is accurate. Due to the importance of these closure relationships, the numerical adjoint

perturbations contained in section 4.3 will focus on aspects of interphase forces.

Onset of Nucleate Boiling Correlation

The Thom and Dittus-Boelter correlations can estimate the onset of nucleate boiling or zONB,

and results were compared to boilEulerFoam. The Dittus-Boelter correlation for wall temper-

ature Tw,D−B is applicable to single phase convective turbulent heat transfer and is given by

[49]

Tw,D−B = Tm(z) +
q(z)

hD−B

where Tm(z) is determined according to the relationship

ṁcp

Tm(z)∫
Tin

dT = 2πD

z∫
0

q(z)dz

where z is the height or axial coordinate of the pipe and cp is a function of the inlet conditions.

Because the heat flux is uniform along the wall, the previous equation can be rewritten as

Tm(z) =
qz

ρAxuzcp
+ Tin

The heat transfer coefficient of the Dittus-Boelter correlation is calculated according to

hD−B =
klNu

Dh

where the Nu is given by

23

www.manaraa.com

Nu = 0.023Re0.8Pr0.4

All of this together creates a function for wall temperature that is dependent on z.

The Thom correlation describes the wall temperature for sub-cooled boiling flows. It gives

a wall temperature Tw,Thom according to the following expression

Tw,Thom =

√
q(qo)

2

exp(2p/po)
+ Tsat

where po = 8.7 MPa, qo = 227 m/(MW0.5), p is in MPa and q is in MW/m2. The point

Tw,D−B = Tw,Thom is the axial location at which the onset of nucleate boiling will occur. This

correlation was used with a given boilEulerFoam run using the following input parameters.

Two sets of results show the zONB values for the previous and current versions of the solver.

Table 2.2: zONB Dittus-Boelter Correlation Parameters

Parameter OF Variable Value

Inlet Pressure p 4.5 MPa
Inlet Velocity Uwater 1.0 m/s
Reynolds Number Re 2.6× 105

Inlet Sub-cooling Tsub 26.6o C
Inlet Void alphaair 0
Wall Heat Flux qWall 3.2× 102 kW/m2

Correlation zONB 0.64 m
Calculated (Old) zONB 1.5 m
Calculated (New) zONB 1.48 m

From Table 2.2, the updated version of boilEulerFoam predicts boiling to occur much later

than that of the Dittus-Boelter and Thom correlation, although there is a slight improvement

of 0.02 m from the old version of boilEulerFoam. This discrepancy in zONB could be due to

the boiling model present in boilEulerFoam, and it is recommended either that this model is

investigated or other correlations for zONB are also examined.

24

www.manaraa.com

2.2 Adiabatic Multiphase Equations for the Forward Problem

For adjoint development, this thesis is primarily concerned with the incompressible adiabatic

system; therefore, the equations of state and the energy equations are removed from the forward

problem. For reference, the term “forward” is used to describe the problem set for which the

adjoint capability is developed, as opposed to the term “adjoint” which describes the problem

set used for functional response calculations. Making the system adiabatic dramatically reduces

the complexity of the forward system while still furthering the development of technology with

respect to adjoint capability. The adiabatic case is constructed from the previously demonstrated

boilEulerFoam such that wall boiling, interphase mass transfer, and energy dependence are

removed. The physical properties in adiabatic boilEulerFoam are constant.

2.2.1 Discretization of the Adiabatic Multiphase Equations

This section describes in detail the discretization of the forward multiphase equations in

boilEulerFoam and its solution algorithm. The previously written momentum equations are

elliptic when seeking a steady solution [53]. The gradient source term makes them weakly de-

pendent on pressure, and splitting of operators is required to couple the linearized momentum

equations with pressure. These section develops the Pressure Implicit Splitting of Operators

(PISO) algorithm as developed by Issa [51]. PISO is developed from implicit Navier-Stokes solu-

tion methods and a predictor-corrector methodology for calculating velocity. Issa demonstrates

the accuracy of PISO methods as well as motivates stability based on the implicit solution of

field variables, although the specific nature of stability is dependent on the exact discretization

and interpolation scheme used. Issa does motivate a general stability for the velocity calculated

using the PISO specific predictor-corrector scheme that has a time-step dependent error am-

plicfication term less than unity. This is however for a single-phase, compressible system, and

Issa notes that increasing the nonlinearity of the system will affect the restriction of time-step

size.

Continuity Equation Discretization

Ignoring evaporation and condensation, the phasic continuity equation is written as

∂(αkρk)

∂t
+∇ · (αkρk~uk) = 0

where k denotes either the l liquid phase or g vapor phase. Rewriting the equation, we have

ρk
∂αk
∂t

+ αk
∂ρk
∂t

+ (αk~uk) · ∇ρk + ρk∇ · (αk~uk) = 0

25

www.manaraa.com

Assuming incompressibility such that

αk

(
∂ρk
∂t

+ ~uk · ∇ρk
)

= αk
Dρk
Dt

= 0

and dividing through by ρk, the continuity equation for phase k can be written as

∂αk
∂t

+∇ · (αk~uk) = 0

Introducing the total and relative velocities

~ut = αl~ul + αg~ug

~ur = ~ug − ~ul

the velocity for the gaseous phase can be written as

~ug = ~ur + ~ul

~ug = ~ur +

(
~ut
αl
− αg
αl
~ug

)
αl~ug = αl~ur + ~ut − αg~ug

(αl + αg) ~ug = αl~ur + ~ut

Noting that αg + αl = 1, we then have for the gaseous phase velocity

~ug = αl~ur + ~ut

Similarly for the liquid phase velocity

~ul = −~ur + ~ug

~ul = −αg~ur + ~ut

Substituting this into the continuity equation for each phase

∂αg
∂t

+∇ · (αg (αl~ur + ~ut)) = 0

∂αl
∂t

+∇ · (αl (−αg~ur + ~ut)) = 0

Adding the continuity equations together

26

www.manaraa.com

∂(αg + αl)

∂t
+∇ · (αgαl~ur − αgαl~ur) +∇ · ((αg + αl) ~ut) = 0

∂(1)

∂t
+∇ · (~ut) = 0

∇ · ~ut = 0

Therefore, for the incompressible system of equations, we have the following constraints

Dρk
Dt

= 0

∇ · ~ut = 0

For finite volume methods, the spatial domain is broken into control volumes or cells. We

represent these control volumes as ∆Vi with i ∈ (0, 1, . . . , N) where N is the total number of

cells. Each cell has a set of associated face area vectors ~Sf . For a two dimensional structured

mesh, each cell (labeled P) will have only four face area vectors associated with four neighbors

(labeled N , S, E, and W after North, South, East, and West) and f ∈ (1, . . . , 4). A sample mesh

cell can be found in Figure 2.9. The EE cell is also shown for reference, and this Figure is also

used in the discussion of cell face interpolation. This P cell along with its four cell neighbors is

called a compact computational molecule.

The continuity equation for the gaseous phase is integrated over a given control volume

or cell ∆V . For simplicity, the cell reference subscript i has been removed for the rest of the

derivation. ∫
∆V

∂αg
∂t

dV +

∫
∆V

∇ · (αg~ut) dV +

∫
∆V

∇ · (αgαl~ur) dV = 0

Writing Gauss’s law ∫
∆V

(∇ · ψ) dV =

∫
δS

(ψ · ~n) dS

where δS is the surface of ∆V and ~n is the outward normal of δS.

For a two dimensional co-located structured mesh, discretized phase fractions αk, velocity

vectors ~uk, pressure p, liquid phase turbulent kinetic energy kl, and liquid phase turbulent

dissipation εl are solved at the cell centers given by the centroid of the control volume ∆V . The

27

www.manaraa.com

𝒏𝒏��⃑ 𝒇𝒇

N

P E W

S

f=1

f=2

f=3

f=4

dP1

x

y

EE

dPE

Sf

Figure 2.9: Two dimensional co-located mesh showing neighbor and face indexing and spacing
for a given point P of interest

face volumetric flux φk,f is defined as

φk,f = ~Sf · ~ukf

where ~ukf is the face interpolated velocity. Since Gausses law requires integrating around cell

surfaces, OpenFOAM calculates divergence and Laplacian terms using the face centered flux

of each cell. Various methods of face interpolation are available in OpenFOAM, and a detailed

analysis of the ones implemented in boilEulerFoam can be found in section 2.2.2

Using the aforementioned integrations, the following approximations are made for the inte-

grated terms in the vapor phase continuity equation

28

www.manaraa.com

∫
∆V

∇ · (αg~ut) dV =

∫
δS

~n · (αg~ut) dS ≈
∑
f

αgφt,f

∫
∆V

∇ · (αgαl~ur) dV =

∫
δS

~n · (αgαl~ur) dS ≈
∑
f

αgαlφr,f

∫
∆V

∂αg
∂t

dV ≈ ∂αg
∂t

∆V

For a given time interval ∆t, the time discretization is performed by evaluating values at

old times n such that ψn = ψ(tn) and new times n+ 1 such that ψn+1 = ψ(tn + ∆t). The Euler

implicit time differencing scheme is written as

∂

∂t

∫
∆V

ψdV

∣∣∣∣∣∣
tn+∆t

≈ (ψ∆V)n+1 − (ψ∆V)n

∆t

If the mesh size is constant with respect to time, then ∆V can be factored out of the time

discretization term.

The solution algorithm builds a coefficient matrix with respect to αn+1
g and solves for up-

dated time values. The end result is a matrix of coefficients operating on αn+1
g discretized

variables and will have the form

aiiα
n+1
i +

∑
j 6=i

aijα
n+1
j = Si

where i, j denote the row and column of the matrix of discretized coefficients, and S is the

source term. All finite volume operators in OpenFOAM construct linear equations of this form.

The superscripts n and n+1 are used to denote previous time and current time values. Variables

without a superscript are assumed to have been calculated during previous times or iterations.

This linearized set of coefficients for αn+1
g is written as

∆V

∆t
αn+1
g − αg∆V

∆t
+
∑
f

(
φtα

n+1
g

)
f

+
∑
f

(
αlφrα

n+1
g

)
f

= 0

OpenFOAM’s discrete solution algorithm uses a Pressure Implicit Splitting of Operators

method to create an artificial pressure equation which helps enforce continuity. As a result, an

29

www.manaraa.com

additional pressure equation is manufactured and the liquid continuity equation is not solved.

Continuous phase void fraction is instead simply given by the expression

αn+1
l = 1− αn+1

g

Momentum Equation Discretization

The momentum equation for phase k is written as

∂αkρk~uk
∂t

+ (~uk · ∇)αkρk~uk = −αk∇p+∇ ·
(
αkτ

eff
k

)
+ αkρk~g + ~Mk

where τ eff
k is the total effective Reynolds stress for phase k. This term is expressed as

τ eff
k = ρkν

eff
k

(
∇~uk + (∇~uk)T −

2

3
I∇ · ~uk

)
− 2

3
Iρkkk

Re-writing the momentum equation time and convection derivatives produces

ρk
∂αk~uk
∂t

+ αk~uk
∂ρk
∂t

+ αk~uk (~uk · ∇) ρk + ρk (~uk · ∇)αk~uk

+ αk∇p−∇ ·
(
αkτ

eff
k

)
− αkρk~g − ~Mk = 0

αk~uk

(
∂ρk
∂t

+ ~uk · ∇ρk
)

+ ρk
∂αk~uk
∂t

+ ρk (~uk · ∇)αk~uk+

αk∇p−∇ ·
(
αkτ

eff
k

)
− αkρk~g − ~Mk = 0

Using the incompressibility assumption and dividing through by ρk results in the following

expression

∂αk~uk
∂t

+ (~uk · ∇)αk~uk +
αk
ρk
∇p− 1

ρk
∇ ·
(
αkτ

eff
k

)
− αk~g −

~Mk

ρk
= 0

The effective phasic stress τ eff
k is written explicitly as

30

www.manaraa.com

1

ρk
∇ ·
(
αkρkν

eff
k

(
∇~uk + (∇~uk)T −

2

3
I∇ · ~uk

)
− 2

3
Iαkρkkk

)

=
1

ρk

 ρk∇ ·
(
αkν

eff
k

(
∇~uk + (∇~uk)T −

2

3
I∇ · ~uk

)
− 2

3
Iαkkk

)
+

(
αkν

eff
k

(
∇~uk + (∇~uk)T −

2

3
I∇ · ~uk

)
− 2

3
Iαkkk

)
∇ · ρk

Assuming that ∇ · ρk = 0, the effective stress becomes

∇ ·
(
αkν

eff
k ∇~uk

)
+∇ ·

(
αkν

eff
k

[
(∇~uk)T −

2

3
I∇ · ~uk

])
−∇ ·

(
αk

2

3
Ikk

)
The interphase momentum transfer considered by this thesis includes drag, lift, virtual

mass, turbulent dispersion, and wall lubrication. The drag force opposes the motion of the

vapor through the fluid and is opposite to the liquid’s relative velocity. It is written as

~MD
g = −CD

3

4

ρl
DS

αg |~ur| ~ur

where |~ur| is the magnitude of the relative velocity and CD is a drag coefficient based on

a given momentum transfer closure relationship. There are formulations of drag available to

OpenFOAM that attempt to minimize the value when dispersed phase void fraction is small by

including the phase fractions for both phases [14] [41] [52]. This phase treatment is also present

in the lift and virtual mass forces. Lumping terms into a single constant Cdr, we have

~MD
g = −Cdr (~ug − ~ul)

~MD
l = −Cdr (~ul − ~ug)

with Cdr = CDρl
3

4

αg
DS
|~ur|. The drag term is treated “semi-implicitly” such that opposite phase

velocity terms are moved to the pressure equation. The remaining terms are treated to either

increase the diagonal dominance of the coefficient matrix or reduce the source term which pro-

motes stability.

The lift interphase momentum transfer term acting on the vapor phase is written as

~ML
g = −CLαg~ur ×∇× ~ut

31

www.manaraa.com

The curl in OpenFOAM is calculated using the following identity

∇× ~a = 2 (?skew∇~a) = ?
(
∇~a− (∇~a)T

)
where the ? operator is the Hodge Dual of the skew-symmetric matrix. The Hodge Dual is

defined as

?

 0 a3 −a2

−a3 0 a1

a2 −a1 0

 =

a1

a2

a3

or for a two dimensional matrix, as is the case for boilEulerFoam, the Hodge Dual is

?

[
0 −a
a 0

]
= a

The curl and cross product expressions in the lift term are calculated explicitly using velocity

values from the previous time step. The lift constant Cl is typically dependent on bubble size

and deformation, but for this thesis Cl remains constant.

Cross products for 2D geometry are not well defined. The 2D cross product analogue used

in boilEulerFoam takes one argument, ~ur, and returns the appropriate orthogonal vector in

2D space, ~u⊥r, such that ~ur× = [ur,1 ur,2]T × = [ur,2 − ur,1]T .

The virtual mass interphase momentum transfer term acting on the vapor phase is written

as

~MVM
g = −Cvmαgαlρl

(
D~ug
Dt
− D~ul

Dt

)
where

D

Dt
is the material derivative, defined again for reference as

D~uk
Dt

=
∂~uk
∂t

+ ~uk · ∇~uk

Virtual mass is also determined semi-implicitly such that matrix coefficients are either added

to the diagonal if they are positive or subtracted from the source if they are negative in an

attempt to improve stability.

The turbulent dispersion interphase momentum transfer term acting on the dispersed phase

is written as

32

www.manaraa.com

~MT
g = −Ctd∇αg

where Ctd is calculated as a function of turbulent kinetic energy, density, and relative velocity.

For this simplified case, Ctd is written as

Ctd = (0.01)klρl

The wall lubrication interphase momentum transfer term acting on the dispersed phase is

written as

~MWL
g = CWαgρl |~ur − (~ur · ~nw)~nw|2

The expression |~ur − (~ur · ~nw)~nw| returns the projection of the relative velocity parallel to the

wall of the pipe. For simplicity, CW is constant for the adiabatic case.

The solution method in boilEulerFoam calculates a “turbulent pressure” rather than an

actual pressure such that pt =
2

3
ρkkk. Therefore, the turbulent kinetic energy term present in

the Reynolds stress is removed from the momentum equation and p = pt is assumed. In order

to apply Gauss’s theorem, the momentum advection term is rewritten in terms of a dyadic

product of vectors such that (~uk · ∇)αk~uk = ∇ · (αk~uk ⊗ ~uk), where ⊗ designates the dyadic

product. Ignoring the pressure term and the gravity term and integrating over a cell volume as

before with the continuity equations, we have

∂

∂t

∫
∆V

αg~ugdV +

∫
δS

~n · (αg~ug ⊗ ~ug) dS −
∫
δS

~n ·
(
αgν

eff
g ∇~ug

)
dS

+

∫
δS

~n ·
(
αgν

eff
g

[
(∇~ug)T −

2

3
I∇ · ~ug

])
dS +

∫
∆V

(−Cdr~ug) dV

+

∫
∆V

~Mg

ρg
dV = 0

The discretized momentum equations are linearized with respect to ~un+1
k , and the coefficients

operating on the dispersed phase variable can be written as

33

www.manaraa.com

(
αn+1
g ∆V

)
∆t

~un+1
g − αg~ug∆V

∆t
−

(
αn+1
g ∆V

∆t
− αg∆V

∆t

)
~un+1
g

+
∑
f

(
φgαg~u

n+1
g

)
f
−
∑
f

(φgαg)f ~u
n+1
g

−
∑
f

(
~Sfαgν

eff
g

)
f

(
∇~un+1

g

)
f

+
∑
f

[
~Sfαg,f

(
νeff
g,f trace

(
(∇~ug)Tf

))
· 2

3
I− νeff

g,f (∇~ug)Tf

]

+
∑
i

~Mg,i

ρg
= 0

with the discretized interphase momentum transfer terms written as

−
(

1

ρg
Cdr~ug∆V

)
+

[
Cl
ρt
ρg
αgαl∆V

[
∂ut,2
∂x1

∂ut,1
∂x2

][
ur,2

−ur,1

]]

− Cvm
ρl
ρg
αgαl

(∆V)

∆t
~un+1
g −

(
~ung∆V

)
∆t

+
∑
f

(
φg~u

n+1
g

)
f

−
(~unl ∆V)−

(
~un−1
l ∆V

)
∆t

−
∑
f

(φl)f ~ul

− Ctd∇αg + CWαgρl |(~ur − (~ur · ~nw)~nw|2

The

(
αn+1
g ∆V

∆t
− αg∆V

∆t

)
~un+1
g −

∑
f

(φgαg)f ~u
n+1
g term is referred to in OpenFOAM as the

“compressibility correction” and is present to help dampen sensitivities of the momentum equa-

tion with respect to changes in αk.

For the continuous phase, the discretized momentum equation is

34

www.manaraa.com

(
αn+1
l ∆V

)
∆t

~un+1
l − (αl~ul∆V)

∆t
−
(
αl∆V

∆t
− αl∆V

∆t

)
~un+1
l

+
∑
f

(
φlαl~u

n+1
l

)
f
−
∑
f

(φgαg)f ~u
n+1
l

−
∑
f

(
~Sfαl,fν

eff
l

)
f

(∇~ul)n+1
f

+
∑
f

[
~Sfαl

(
νeff
l trace

(
(∇~ul)Tf

))
· 2

3
I− νeff,n+1

l (∇~ul)Tf
]

+
∑
i

~Ml,i

ρg
= 0

with the discretized interphase momentum transfer terms written as

− (Cdr~ul∆V)−

[
Clρtαgαl∆V

[
∂ut,2
∂x1

∂ut,1
∂x2

][
ur,2

−ur,1

]]

+ Cvm
ρl
ρg
αgαl

(∆V)

∆t
~un+1
l −

(~unl ∆V)

∆t
+
∑
f

(
φl~u

n+1
l

)
f

−
(
~ung∆V

)
−
(
~un−1
g ∆V

)
∆t

−
∑
f

(φg)f ~ug

+ Ctd∇αg − CWαgρg |(~ur − (~ur · ~nw)~nw|2

Following this formulation, the momentum equation is a linear system with respect to ~un+1
k ,

and the discretized momentum equation can be written generally as

A~un+1
k = ~R

where A is the matrix containing the discretized coefficients operating on cell centered velocities

for the momentum equation. An approximate solution for ~un+1
k can be constructed such that

~un+1
k ≈ A−1

D
~R−A−1

D AH~u
n
k

where AD is the matrix of diagonal coefficients of A and AH is the matrix of off-diagonal

coefficients of A.

35

www.manaraa.com

Pressure Equation Discretization

The splitting of operators and pressure equation formulation is performed according to the

PISO algorithm methodology, a derivative of the predictor-corrector scheme for velocity. This

methodology predicts the phase flux φ∗k and the velocity ~u∗k according to

~u∗k = A−1
Dk
~Rk −A−1

DkAHk~u
n
k

φ∗k = ~Sf · ~u∗k,f

where ~u∗k,f is the predicted velocity interpolated to the cell face. Although this is the typical

formulation for the flux prediction, in OpenFOAM there is a flux correction term present such

that φ∗k is determined by

φ∗k = ~Sf · ~u∗k,f + φdk

[
1−min

(
|φdk|
|φnk |+ ε

, 1

)]
1

∆t

with

φdk =
(
φnk − ~Sf · ~unk,f

)
where φnk and ~unk,f are the fluxes and velocities for the previous n time step. This expression

attempts to correct flux predictions in order to balance values at the faces of a given cell. This

term is not always necessary for the PISO algorithm, and other subsequent applications do not

include it.

For the flux corrections, the matrix diagonal
(
A−1
D

)
f

is interpolated so that it operates on

cell face values. The flux is then corrected to include the gravity, pressure, and drag terms such

that

φ∗∗g = φ∗g + ~Sf ·
((

A−1
Dg

)
f
αg~gf

)
+ ~Sf ·

(
(A−1

Dg)f
Cdr
ρg

~ul

)

φ∗∗l = φ∗l + ~Sf ·
((

A−1
Dl

)
f
αl~gf

)
+ ~Sf ·

(
(A−1

Dl)f
Cdr
ρl
~ug

)
The mixture flux includes both continuous and dispersed phases such that

φ = αg,fφg + αl,fφl

We write the total flux using the corrected flux φ∗∗k and the pressure term, producing the

expression

36

www.manaraa.com

φ = αg,f

[
φ∗∗g − ~Sf ·

((
A−1
Dg

)
f

αg,f
ρg
∇p
)]

+ αl,f

[
φ∗∗l − ~Sf ·

((
A−1
Dl

)
f

αl,f
ρl
∇p
)]

Enforcing the continuity constraining ∇ · φ = 0 results in the following pressure equation

∇ · φ∗∗ −∇ ·
[
Sf ·

(
αg,f

(
A−1
Dg

)
f

αg,f
ρg

+ αl,f
(
A−1
Dl

)
f

αl,f
ρl

)
∇p
]

= 0

Integrating over a cell volume and applying Gauss’s law, we have an integrated pressure equation

that is then solved for a discretized pressure field p∗∫
δS

φ∗∗dS −
∫
δS

Sf

(
αg,f

(
A−1
Dg

)
f

αg,f
ρg

+ αl,f
(
A−1
Dl

)
f

αl,f
ρl

)
∇p∗ dS = 0

∑
f

Sfφ
∗∗ −

∑
f

SfSf

(
αg,f

(
A−1
Dg

)
f

αg,f
ρg

+ αl,f
(
A−1
Dl

)
f

αl,f
ρl

)
(∇p∗)f = 0

For the SIMPLE and PIMPLE methods, this pressure equation can undergo relaxation and

be solved multiple times. A detailed description of this solution algorithm can be found in

section 2.2.3. The velocity terms are then corrected using the following expression

~u∗∗k = ~u∗k + reconstruct

[
~Sf ·

((
A−1
Dk

)
f
αk~gk +

(
A−1
Dk

)
f

Cdr
ρk

~unj −
(
A−1
Dk

)
f

αk,f
ρk
∇p∗

)]
where ~uj denotes the flux for the alternate phase. The correction term is calculated at the face

of the cell and reconstructed as a cell center velocity term using the following methodology

reconstruct(~u) =

∑
f

1

|~Sf |
~Sf ⊗ ~Sf

−1

·

∑
f

1

|~Sf |
~Sfφf

The end result is then a corrected velocity, flux, and pressure field.

k-ε Equation Discretization

BoilEulerFoam uses a k-ε Reynolds averaged Navier-Stokes or RANS model. This model time-

averages the Navier-Stokes equations for turbulent flows and ignores local eddy formation,

considering instead the time averaged and fluctuating terms ū and ū′. The resulting deriva-

tion requires closure models due to the Reynolds stress term τ = −ρū′ū′ present in the RANS

expression for momentum. For the k-ε model, closure relationships are derived for turbulent

kinetic energy, or k = (||ū′||2)2, and the rate of turbulent dissipation, or ε =
ν

2

(
∇ū′ + (∇ū′)T

)
,

37

www.manaraa.com

where turbulent dissipation can be thought of as the work done by the smallest eddies on the

viscous stresses [53].

The turbulent viscosity νtk for multiphase flow is equal to the bubble induced turbulent

viscosities. The equation for turbulent viscosity for the continuous phase is as follows

νtl = Cµ
k2
l

εl

where Cµ = 0.09. The effective viscosity for the continuous phase is then the summation of

the continuous phase viscosity, the turbulent viscosity, and the shear induced viscosity and is

written as

νeff
l = νl + νtl +

1

2
CµbDSαg|~ug − ~ul|

where Cµb = 1.2 is the factor of enhanced turbulence in the continuous phase due to the

dispersed phase, and DS is the bubble diameter of the dispersed phase (set to 0.1 mm). The

effective viscosity of the vapor phase is also dependent on the turbulent liquid viscosity and is

given by

νeff
g = νg + C2

t ν
t
l

where Ct is the turbulent response coefficient. This is often defined as the ratio of velocity

fluctuations of the dispersed phase to the continuous phase, but for the adiabatic case, Ct = 1.

As mentioned previously, the turbulent kinetic energy and turbulent dissipation equations

for the dispersed phase are ignored. The liquid k-ε equations are then

∂αlkl
∂t

+∇ · (~ulαlkl)−∇ ·
(
νeff
l αl∇kl

)
= αlPl − αlεl

∂αlεl
∂t

+∇ · (~ulαlεl)−∇ ·
(
νeff
l αl∇εl

)
= αl

εl
kl

(C1Pl − C2εl)

where C1 = 1.44 and C2 = 1.92. The kinetic energy production term Pl is defined as

2νtl

[
∇~ul · dev

(
1

2
∇~u+

1

2
(∇~u)T

)]
where the deviatoric operation for a given 2× 2 tensor T is

dev(T) = dev

([
T11 T12

T21 T22

])
=

[
T11 − 1

3T11 T12

T21 T22 − 1
3T22

]

38

www.manaraa.com

Integrating over a cell volume and applying Gauss’s law, we have for the turbulent kinetic

energy equation

∂

∂t

∫
∆V

αlkl +

∫
δS

~n · (~ulαlkl) dS −
∫
δS

~n ·
(
νeff
l αl∇kl

)
=

∫
∆V

(αlPl − αlεl) dV

(
αn+1
l ∆V

)
∆t

kn+1
l − (αlkl∆V)

∆t
−

(
αn+1
l ∆V

∆t
−
αnl ∆V

∆t

)
kn+1
l

+
∑
f

(
φnl αlk

n+1
l

)
f
−
∑
f

(φlαl)f k
n+1
l

−
∑
f

~Sfν
eff
l α

n+1
l (∇kl)n+1

f = [∆V (αlPl − αlεl)]

and for the turbulent dissipation equation

(
αn+1
l ∆V

)
∆t

εn+1
l − (αlεl∆V)

∆t
−

(
αn+1
l ∆V

∆t
−
αnl ∆V

∆t

)
εn+1
l

+
∑
f

(
φnl αlε

n+1
l

)
f
−
∑
f

(φlαl)f ε
n+1
l

−
∑
f

~Sfν
n,eff
l αn+1

l (∇εl)n+1
f =

(
αl
εl
kl
C1Pl∆V

)
−
(
αl
εl
kl
C2εl

)n+1

2.2.2 Cell Face Interpolation Schemes

For co-located mesh configurations such as the one implemented in OpenFOAM, a face inter-

polation scheme is necessary in order to solve the finite volume discretized equations. Open-

FOAM makes many interpolation schemes available to its users, such as simple linear interpo-

lation or higher resolution total variation diminishing (TVD) schemes. The code inherited from

boilEulerFoam makes use of TVD schemes in order to limit oscillations and insure stability

for solutions with sharp variations in void fraction.

In section 2.2.1, expressions involving flux, divergence, Laplacian, and gradient operators

require interpolation as designated by the subscript f . The interpolation methods described

in this section develop methods for these interpolated parameters and reference the previously

shown 2D structured mesh pictured in Figure 2.9.

Two interpolation schemes are specified for calculating the divergence of convection terms.

39

www.manaraa.com

These interpolation schemes are called vanLeer and limitedLinear in the OpenFOAM systems

file fvSchemes. In order to derive these interpolation methods, we start with the general formula

for an interpolated value θf at the east face of Figure 2.9 with f = 1 given by the following

expression

θf=1 = θP + ψ (θE − θP) (2.1)

where ψ is defined according to the interpolation scheme. If linear interpolation is used, then

ψ is given by

ψ =
~dp1
~dPE

If spacing in the x direction is uniform, or ~dPE = ~dEE , then ψ =
1

2
and θf is simply the average

of cell P its face neighbor values. Linear interpolation is used to calculate face centered flux φf .

The vanLeer high resolution TVD scheme interpolates to the eastward face of Figure 2.9

using equation 2.1 with ψ defined by [47]

ψ(r) =
1

2

(
r + |r|
r + 1

)
and the upwinded flux splitting ratio given by

r =
θW − θP
θP − θE

This interpolation scheme can help limit spurious oscillations in the void fraction across cell

faces according to the TVD methodology [63].

The limitedLinear interpolation scheme is used in the interpolation of velocity to cell

faces, and weights ψ calculated using linear interpolation with either 0 or 1. Since RANS pipe

bulk flow convects mass in only one direction, limitedLinear simply uses upwind face values

and ψ = 1.

The vanLeer interpolation scheme is used for the following discretized expressions

� αn+1
g in the convection term

∑
f

(φt,f)n αn+1
g and

∑
f

(αlφt,f)n αn+1
g from the dispersed

phase continuity equation

� αnl in the convection term
∑
f

(αlφt,f)n from the dispersed phase continuity equation

40

www.manaraa.com

� αn+1
k in the convection term

∑
f

φnk,fα
n+1
k ~un+1

k from the momentum equations

� αn+1
l in the convection terms

∑
f

φnl,fα
n+1
l kn+1

l and
∑
f

φnl,fα
n+1
l εn+1

l from the k-ε turbulence

equations

� αn+1
l from the continuity constraint for the pressure equation

The limitedLinear interpolation scheme is used for the following discretized expressions

High Resolution Schemes Implementation in OpenFOAM

� ~un+1
k in

∑
f

φnk,fα
n+1
k ~un+1

k from the convection term in the momentum equations

� ~un+1
k in

∑
f

φnk,f~u
n+1
k from the virtual mass interphase momentum transfer term in the

momentum equations

� εn+1
l in the convective term

∑
f

φnl α
n+1
l εn+1

l from the ε turbulence equation

� kn+1
l in the convective term

∑
f

φnl α
n+1
l kn+1

l from the k turbulence equation

The general form for Laplacian terms is
∫

∆V

∇· (ν∇θ) dV ≈
∑
f

νf ~Sf · (∇θ)f . Looking at only

the eastward face in Figure 2.9, we have the following expression for the discretized Laplacian

operator

~S1 · (∇θ)1 = |S1|
θE − θP
| ~dPE |

This equation is only valid if ~nE is orthogonal to ~S1, which is the case for the structured mesh

used in boilEulerFoam. The value νf in the discretized Laplacian expression is linear interpo-

lated from the νP and νE values. This Laplacian scheme is used for the following discretized

expressions

�
∑
f

~Sfαk,fν
eff,n+1
k,f (∇~uk)n+1

f from the discretized momentum equations

� The Laplacian term in the pressure equation. Note that the αn+1
k,f terms are interpolated

using the vanLeer scheme. (AD)f and the ν term are already a surface scalar field and

have been interpolated using the default linear scheme.

41

www.manaraa.com

2.2.3 Solution Algorithm Overview

The discretized Reynolds averaged Navier-Stokes equations are solved using a Pressure Implicit

Splitting of Operators or PISO algorithm. This methodology guesses phasic velocity values that

do not initially satisfy the continuity equation. A pressure equation is constructed independent

from the momentum equations based on predicted fluxes that are forced to obey continuity.

This pressure field is then used to correct the initial velocity prediction.

For unsteady and incompressible flows, the PISO algorithm uses an additional corrector

step that includes a second pressure equation to account for compressibility effects where Mach

numbers are close to or greater than 1. The fluid model considered by boilEulerFoam is incom-

pressible, therefore the PISO algorithm resembles that of the Semi-Implicit Method for Pressure-

Linked equations or the SIMPLE algorithm. SIMPLE is used for incompressible, steady-state

equations that often require relaxation.

Figure 2.10 shows the pseudo-code for the PISO algorithm used by boilEulerFoam. First,

the dispersed phase continuity equation is solved for αg and the k-ε turbulence equations are

solved for kl and εl. The momentum equations are then constructed without gravity, pressure,

and certain interphase momentum transfer terms. These split momentum equations are then

used to predict ~u∗k and φ∗k.

The face volumetric flux φ∗∗k is corrected once to include gravity and interphase momentum

transfer terms previously removed from the momentum equations. The total flux φ is then

constructed using the corrected fluxes φ∗∗k and the pressure gradient previously removed from

the momentum equations. This total flux is forced to obey continuity, resulting in an implicit

equation for pressure. This pressure equation is solved for the pressure, p∗, and corrected ve-

locities ~u∗∗k are reconstructed using p∗, gravity, and interphase momentum transfer terms.

After pressure p∗ and corrected velocity ~u∗∗k are calculated, the PISO algorithm advances

the time-step and the algorithm is continued for t + ∆t. The SIMPLE algorithm, instead of

advancing the time-step, iterates on the predictor-correction scheme until the system reaches

steady state. Figure 2.11 shows a typical pseudo-code for the SIMPLE algorithm. According to

this methodology, SIMPLE will relax solutions to the predictor-correction iterations until a nor-

malized tolerance is reached for solutions to the flow equations. However, PISO assumes that for

one predictor-correction iteration, the calculated pressure and velocity are time value correct,

given a stable numerical configuration. For flow systems that have steady state solutions, there is

no real difference between PISO and SIMPLE other than the relaxation that occurs in SIMPLE.

42

www.manaraa.com

START

Solve continuity and turbulence
equations

Construct momentum equations and
predict velocities and fluxes

Perform first flux prediction using
gravity and interphase momentum

Construct total flux and solve pressure
equation

Correct velocities

𝛼𝛼𝑘𝑘𝑛𝑛+1, 𝑘𝑘𝑙𝑙𝑛𝑛+1, 𝜀𝜀𝑙𝑙𝑛𝑛+1

𝑢𝑢�⃑ 𝑘𝑘∗ , 𝜙𝜙𝑘𝑘∗

𝜙𝜙𝑘𝑘∗∗

𝑝𝑝∗

𝑢𝑢�⃑ 𝑘𝑘∗∗

Initialize variables - 𝛼𝛼𝑘𝑘𝑜𝑜, 𝑘𝑘𝑙𝑙𝑜𝑜, 𝜀𝜀𝑙𝑙𝑜𝑜, 𝑢𝑢�⃑ 𝑘𝑘𝑜𝑜, 𝑝𝑝𝑜𝑜

Update values and increase timestep

𝑛𝑛 = 𝑁𝑁?

𝑢𝑢�⃑ 𝑘𝑘𝑛𝑛+1 = 𝑢𝑢�⃑ 𝑘𝑘∗∗, 𝑝𝑝𝑛𝑛+1 = 𝑝𝑝∗ 𝑛𝑛 = 𝑛𝑛 + 1

Yes

END

No

Write 𝑛𝑛 time values

Figure 2.10: Pseudo-code for the Pressure Implicit Splitting of Operators or PISO algorithm

43

www.manaraa.com

START

Solve continuity and turbulence
equations

Construct momentum equations and
predict velocities and fluxes

Perform first flux prediction using
gravity and interphase momentum

Construct total flux and solve pressure
equation

Correct velocities

𝛼𝛼𝑘𝑘𝑠𝑠+1, 𝑘𝑘𝑙𝑙𝑠𝑠+1, 𝜀𝜀𝑙𝑙𝑠𝑠+1

𝑢𝑢�⃑ 𝑘𝑘∗ , 𝜙𝜙𝑘𝑘∗

𝜙𝜙𝑘𝑘∗∗

𝑝𝑝∗

𝑢𝑢�⃑ 𝑘𝑘∗∗

Initialize variables - 𝛼𝛼𝑘𝑘𝑜𝑜, 𝑘𝑘𝑙𝑙𝑜𝑜, 𝜀𝜀𝑙𝑙𝑜𝑜, 𝑢𝑢�⃑ 𝑘𝑘𝑜𝑜, 𝑝𝑝𝑜𝑜

Update and relax values

𝜎𝜎𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐 < 𝜎𝜎𝑡𝑡𝑜𝑜𝑙𝑙?

𝑢𝑢�⃑ 𝑘𝑘𝑠𝑠+1 = 𝑢𝑢�⃑ 𝑘𝑘𝑠𝑠 + 𝛽𝛽(𝑢𝑢�⃑ 𝑘𝑘∗∗ − 𝑢𝑢�⃑ 𝑘𝑘𝑠𝑠)

 𝑝𝑝𝑠𝑠+1 = 𝑝𝑝𝑠𝑠 + 𝛽𝛽(𝑝𝑝∗ − 𝑝𝑝𝑠𝑠)

𝑠𝑠 = 𝑠𝑠 + 1

Yes

END

No

Figure 2.11: Pseudo-code for the Semi-Implicit Method for Pressure-Linked Equations or SIM-
PLE algorithm

44

www.manaraa.com

OpenFOAM provides an enhanced PISO algorithm that combines the methods from both

the SIMPLE and PISO algorithms. This enhanced method, called PIMPLE, includes additional

corrector steps within the PISO loop for each time step and allows for relaxation. PIMPLE is

therefore able to use large time-steps (Courant No. Co > 3) for complex geometries. Figure 2.12

shows a typical pseudo-code for the PIMPLE algorithm. This algorithm is similar to PISO, ex-

cept that there are two additional loops that iterate from s ∈ (1, S) for solutions to ps and from

r = (1, R) for predicted velocities ~urk and fluxes φrk. Additionally, there is a provision to relax ei-

ther pressure, velocity, void fraction, or turbulence variables such that xn+1 = xn+β (xr − xn),

where n designates current time, and r designates an internal PIMPLE loop iterate. The final

inner and outer loops for PIMPLE do not relax variables, and β = 1 so that the time dependent

values remain accurate.

45

www.manaraa.com

START

Solve continuity and turbulence equations

Construct momentum equations and predict velocities
and fluxes

Perform first flux prediction using gravity and
interphase momentum

Solve pressure equation using total flux

𝛼𝛼𝑘𝑘𝑠𝑠+1, 𝑘𝑘𝑙𝑙𝑠𝑠+1, 𝜀𝜀𝑙𝑙𝑠𝑠+1

𝑢𝑢�⃑ 𝑘𝑘𝑠𝑠+1, 𝜙𝜙𝑘𝑘𝑠𝑠+1

𝜙𝜙𝑘𝑘𝑠𝑠∗

𝑝𝑝∗

Initialize variables - 𝛼𝛼𝑘𝑘𝑜𝑜, 𝑘𝑘𝑙𝑙𝑜𝑜, 𝜀𝜀𝑙𝑙𝑜𝑜, 𝑢𝑢�⃑ 𝑘𝑘𝑜𝑜, 𝑝𝑝𝑜𝑜

Correct velocities

𝑛𝑛 = 𝑁𝑁?

𝑢𝑢�⃑ 𝑘𝑘∗∗

𝑛𝑛 = 𝑛𝑛 + 1

Yes

END

No

𝜎𝜎𝑝𝑝,𝑡𝑡𝑜𝑜𝑙𝑙 < 𝜎𝜎𝑝𝑝,𝑡𝑡𝑜𝑜𝑙𝑙?

Yes

No

𝑝𝑝𝑠𝑠+1 = 𝑝𝑝𝑟𝑟+1

𝑟𝑟 = 𝑟𝑟 + 1

or 𝑟𝑟 = 𝑅𝑅?

𝑝𝑝𝑟𝑟+1 = 𝑝𝑝𝑟𝑟 + 𝛽𝛽(𝑝𝑝∗ − 𝑝𝑝𝑟𝑟)

Inner PIMPLE correction
loop

𝜎𝜎𝑢𝑢,𝑡𝑡𝑜𝑜𝑙𝑙 < 𝜎𝜎𝑢𝑢,𝑡𝑡𝑜𝑜𝑙𝑙?

or 𝑠𝑠 = 𝑆𝑆?

𝑠𝑠 = 𝑠𝑠 + 1

𝑢𝑢�⃑ 𝑘𝑘𝑠𝑠+1 = 𝑢𝑢�⃑ 𝑘𝑘𝑠𝑠 + 𝛽𝛽(𝑢𝑢�⃑ 𝑘𝑘∗∗ − 𝑢𝑢�⃑ 𝑘𝑘𝑠𝑠)

Outer PIMPLE correction
loop

No

𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑠𝑠+1, 𝑢𝑢�⃑ 𝑘𝑘𝑛𝑛+1 = 𝑢𝑢�⃑ 𝑘𝑘𝑠𝑠+1, 𝛼𝛼𝑘𝑘𝑛𝑛+1 = 𝛼𝛼𝑘𝑘𝑠𝑠+1,
𝑘𝑘𝑙𝑙𝑛𝑛+1 = 𝑘𝑘𝑙𝑙𝑠𝑠+1, 𝜀𝜀𝑙𝑙𝑛𝑛+1 = 𝜀𝜀𝑙𝑙𝑠𝑠+1

Timestep loop

Write 𝑛𝑛 time values

Figure 2.12: Pseudo-code for the combined SIMPLE and PISO algorithms, or the PIMPLE
algorithm

46

www.manaraa.com

2.2.4 Forward Solution Analysis

The following section shows field variable solutions using the boilEulerFoam forward equations,

simplified from the original boilEulerFoam equations. Input parameters are shown in Table 2.3.

Table 2.3: Adiabatic Input Parameters

Parameter OF Variable Value

Pipe Diameter Dh 51.2 mm
Inlet Pressure p 4.5 MPa
Inlet Velocity Uwater 1.01 m/s
Bubble Diameter Ds 4.5 mm
Inlet Void alphaair 0.1
Wall Heat Flux qWall 0 kW
Constant Lift Coefficient Cl 0.001
Constant Turb. Disp. Coefficient Ctd 0.01
Constant Virtual Mass Coefficient Cvm 0.5
Frank Wall Model Coefficients Cwc, Cwd, p 10.0, 6.8, 1.7
Drag Model Ishii-Zuber

Figures 2.17 through 2.13 that follow contain the axi-symmetric simulation results for vari-

ous flow phenomena as predicted by the adiabatic case of boilEulerFoam.

Figure 2.13: Vapor void fraction results for adiabatic boilEulerFoam multiphase base case

47

www.manaraa.com

Figure 2.14: Lift force in the radial direction for adiabatic boilEulerFoam multiphase base
case

Figure 2.15: Wall lubrication force in the radial direction for adiabatic boilEulerFoam multi-
phase base case

Figure 2.16: Magnitude of turbulent dispersion force for adiabatic boilEulerFoam multiphase
base case

48

www.manaraa.com

Figure 2.17: Pressure field results for adiabatic boilEulerFoam multiphase base case

Figure 2.18: Vapor velocity magnitude field results for adiabatic boilEulerFoam multiphase
base case

Figure 2.19: Liquid velocity magnitude field results for adiabatic boilEulerFoam multiphase
base case

49

www.manaraa.com

Figure 2.20: Turbulent kinetic energy for adiabatic boilEulerFoam multiphase base case

Figure 2.21: Turbulent dissipation for adiabatic boilEulerFoam multiphase base case

In Figure 2.13, the void profile enters the pipe at a uniform value of 0.1. As the velocity

profile is established, interphase momentum transfer terms in conjunction with diffusion and

dissipation set up the void profile. The lift force in Figure 2.14 acts in a positive radial direction

(upwards) and pushes void towards the wall as a function of radial velocity. The wall lubrication

force shown in Figure 2.15 acts in the negative radial direction (down) and counteracts lift by

pushing void away. The magnitude of turbulent dispersion shown in Figure 2.16 acts on the

sharpest gradients of the dispersed phase void profile.

Figure 2.17 indicates a linear pressure drop of 15 kPa from the inlet of the pipe to its exit,

similar to that shown previously in Figure 2.2, which is expected for the friction dominated flow.

From Figures 2.18 and 2.19, the vapor and liquid phase velocity distributions closely resemble

one another with the exception that the vapor phase velocity magnitude is slightly greater than

the liquid magnitude throughout the pipe. This is due to the buoyancy of the less dense vapor

phase. However, the drag force limits the acceleration of the vapor phase and the resulting

maximum relative velocity is 0.36 m/s.

50

www.manaraa.com

The turbulent kinetic energy and turbulent dissipation solution fields are shown in Figures

2.20 and 2.21. The turbulent kinetic energy increases along the wall of the pipe and partially

spreads into the bulk flow as the velocity profile develops. The turbulent dissipation coefficient

remains fairly isolated along the wall where the steepest changes in velocity are present.

Some numerical oscillation is visible in Figure 2.18 and resembles the oscillation shown in the

radial lift force in Figure 2.14. The explicit treatment of interphase momentum transfer terms

typically decrease the diagonal dominance of the linearized momentum and pressure equations,

which is why several terms are removed from the discretized momentum equation formulation.

Since the relative velocity is high for this case (36% of inlet continuous velocity), interphase

momentum transfer may be causing some small numerical instabilities, such as the ones visible

in Figure 2.14. Increasing the drag force or changing the bubble size, either artificially or by

changing drag models, will likely help limit some of these numerical oscillations since the nu-

merical treatment increases stability.

In the PhD thesis conducted by Alali, boilEulerFoam predicted void distributions without

phase change were compared to experimental MT-LOOP test results [48]. MT-LOOP data was

collected for bubbly flows in a vertical pipe with an inner diameter of 51.2 mm. Data was

collected at z = 3.5 m for various bubble sizes, void fractions, and superficial gas and liquid

velocities. Alali’s comparison is shown in Figure 2.22.

51

www.manaraa.com

Figure 2.22: Comparison between MT-Loop radial void profile distributions and results from
boilEulerFoam without phase change, as presented in Alali’s PhD Thesis pp. 33-52.

52

www.manaraa.com

Radial void profiles resemble MT-LOOP data in predicting the accumulation of void close

to the wall of the pipe, and general bulk flow average values show good agreement with ex-

perimental results. The general shape of the void profile predicted by boilEulerFoam is the

same for all of the cases, and for higher superficial gas velocities (JG = 0.0235m/s), some of the

experimental bulk flow profile behavior is missed in the calculation. The shape of these void

profiles is highly dependent on interphase momentum transfer closure models, and these will

be the primary focus of adjoint sensitivity studies.

53

www.manaraa.com

Chapter 3

Automatic Differentiation

Implementation in OpenFOAM

This chapter details the automatic differentiation capability built for OpenFOAM in order to

create Jacobian matrices required for adjoint calculations. The AD capability was built using

an existing object called FadOne developed by Jasak [54]. Fad stands for Foam automatic dif-

ferentiation, and One indicates its first implementation in OpenFOAM. The prefix fad is used

as a naming convention for AD implementations of existing OpenFOAM objects. For example,

the AD counterpart to scalarField, an object designed to hold a list of scalar variables, would

be fadScalarField.

Typical use of OpenFOAM does not require an in depth understanding of the objects re-

quired to build solvers. These objects are meant to be building blocks, where the functionality

is utilized without understanding or having access to the internals of an object. This premise

is referred to in computer science theory as encapsulation. However, in order to implement

the FadOne class to automatically differentiate flow field solutions, all necessary operators and

functions must be able to handle FadOne objects. It was therefore necessary to alter much

of the source code that otherwise would be unnecessary to alter during normal solver con-

struction. Performing a search of all OpenFOAM directories provides a primitive tally of over

6,000 instances of code pertaining to fad objects, and implementing automatic differentiation

in OpenFOAM was not trivial.

This chapter provides a general explanation of the application of automatic differentia-

tion in the forward sense and discusses it’s implementation in OpenFOAM’s object hierarchy.

This chapter demonstrates AD capability for a basic Laplacian solver and verifies its created

Jacobian. The final section demonstrates AD with respect to the nonlinear multiphase CFD

54

www.manaraa.com

equations by verifying Jacobian matrices for a one dimensional adiabatic test case.

3.1 Templates and Operator Overloading

The most fundamental objects in OpenFOAM are called “primitive types” and include scalars,

vectors, and tensors. These act as the fundamental variables which all finite volume functions

use for their calculations. These functions then call operators that multiply, divide, etc. variables

appropriately according to finite volume methodology. The primary functionality of automatic

differentiation in OpenFOAM replaces existing primitive type variables with an analogous fad

variable that intrinsically calculates both the variable values and derivatives. In an ideal sce-

nario, operators and functions that take primitive types are blind to what they have been

passed. The specifics of primitive type calculations are handled by a base class so that finite

volume functions can be reused for many different implementations.

This functionality is accomplished in C++ by using templates and operator overloading.

Templates allow the compiler to treat a function or object generally, trusting that specific

definitions for specific variables is contained somewhere else in the code. We can demonstrate

this principle using the divergence function taken from a basic transport equation

1 fvm::div(phi,T)

This function uses the cell face fluxe φ to calculate the divergence of field T. The div() function,

however, does not know whether T is a field of scalars, a field of vectors, or a field of fadScalars,

etc. The appropriate declaration of the divergence function will therefore look like

2 template<class Type>

3 fvMatrix<Type> div

4 (

5 GeometricField<Type, ...

6)

where the expression on line 2 lets the compiler know that the following function can be general

for any type. Through templates, the definition of div() is general for any variable, and the

function does not care what type of variable T is. The implementation of the div() divergence

function will boil down to basic algebraic operations on T. These algebraic operators can accept

floating point numbers or integers and use the existing functionality of C++ to return a value.

A developer also has the freedom to define their own implementation of these same operators

55

www.manaraa.com

that can accept and return instances of user created classes. In other words, a multiplication

involving scalarA * scalarB and a multiplication involving fadScalarA * fadScalarB can

both use the same ∗ operator, but their returned value is dependent on the specific definition

of ∗ contained within the scalar and fadScalar classes. In computer science, this premise is

known as operator overloading.

The combination of templates and operator overloading is the primary means by which

automatic differentiation is implemented in OpenFOAM. The functions used to construct CFD

solvers do not change, but added capability allows these functions to calculate both solutions

and derivatives of solutions with respect to user defined values.

3.1.1 FadOne Implementation and Overloading Example

The FadOne class is an object designed to store both a value and all user defined derivatives

of a value. If there is only one dependent variable x = 5 for an example calculation, then the

FadOne implementation of this scalar will be

1 fadScalar x(0.0);

2 x.value() = 5.0;

3 x.deriv() = 1.0;

First, the fadScalar object x is declared and initialized on line 1. At the time of initialization,

all values and derivatives are set equal to 0.0. Next, the value() function is called, setting the

variable value equal to 5.0. Finally, the deriv() function is called and sets the derivative of x

with respect to itself, which is 1.0. Basic operations on x can then be performed according to

the following example

4 fadScalar y(0.0);

5 y = 3*x - 5;

at the end of the calculation on line 5, the fadScalar object y in this example contains 10 for

its value and 3 for its derivative with respect to x. In this basic example, only one derivative

is stored in a given fadScalar object. FadOne objects may contain as many derivatives as are

needed by specifying an integer value for nVars according to the following typename definition

56

www.manaraa.com

6 template<class Cmpt, int nVars>

7 class FadOne

8 {

...

9 typename FadOne<scalar, 1> fadScalar;

where Cmpt designates a primitive type, and nVars designates the number of derivatives. There-

fore, the typename for fadScalar on line 9 is a templated FadOne object that holds a scalar

value and one scalar derivative. This implementation requires the user to set the number of

derivatives at compile time. Ideally, the one would like to set the number of derivatives at run

time, but it is computationally expensive to build arrays of unknown size in C++, especially if

these arrays are to be used as primitive types.

We now demonstrate operator overloading using the basic definition of multiplication for au-

tomatically differentiable objects. According to basic calculus, the derivative of a multiplication

operation is given by

d

dx
(f1 × f2) = f1

df2

dx
+ f2

df1

dx

The multiplication operation of the fadScalar object x shown on line 5 in the previous example

automatically performs this calculation according to the following overloaded ∗ = operator

6 template<class Cmpt, int nVars>

7 void FadOne<Cmpt, nVars>::operator*=(FadOne<Cmpt, nVars> v)

8 {

9 for (int i = 0; i < nVars; i++)

10 {

11 this->deriv(i) = this->deriv(i)*v.value() + this->value()*v.deriv(i);

12 }

13

14 this->value() *= v.value();

15 }

This operator is defined for a templated FadOne class and can accept any primitive type Cmpt

and any integer number of derivatives nVars as represented by the template declaration on line

6. When a multiplication operation is called using a FadOne object, first the derivative is set

on lines 9 through 12. For reference, this is a pointer that refers to the object on the left hand

side of the *= operator. The for loop iterates through all the derivatives of the FadOne object

57

www.manaraa.com

and sets the derivative of this on line 11 according to the multiplication rule. Finally, the value

of this is set on line 14, and the ∗ = carries out the appropriate multiplication and sets all

derivatives automatically.

All algebraic operators required by the finite volume functions are defined similarly within

the FadOne class. As a result, instantiation of FadOne objects can use existing OpenFOAM

solvers to automatically return derivatives of user defined variables.

3.2 OpenFOAM Object Hierarchy

The primary function of any OpenFOAM solver is to take a mesh and a given field of vari-

ables and construct matrices according to finite volume methodology. These matrices are then

solved according to a supplied algorithm, whether it be PISO or SIMPLE or another user de-

fined method. Objects in OpenFOAM are designed in such a way to facilitate this methodology

as efficiently and succinctly as possible. Figure 3.1 on the following page shows a rough flow

chart demonstrating the use of objects to build finite volume matrices and perform calculations.

Primitive type objects such as scalars, vectors, and tensors are the starting point for this

hierarchy. Within each of these primitive classes are hidden all of the necessary operators for

performing calculations such as dot products, cross products, and algebraic operations, as well

as function calls like max or min.

The FadOne class created by Jasak was originally designed to be a stand alone functionality.

To allow OpenFOAM to perform finite volume operations on FadOne objects, it was necessary

to add a FadOne primitive analogous to the scalar primitive type. This FadOne primitive type

is called fadScalar, and its implementation is shown in section 3.1.1 on lines 6-9 of example

source code. If a scalar holds a floating point number, then a fadScalar holds floating point

values and floating point derivatives. In the same way that vectors hold dimensional arrays of

scalars, fadVectors must therefore be able to hold dimensional arrays of fadScalars. Simi-

larly, all operations and classes defined for scalars must also have an equivalent definition for

fadScalars. Ideally these operations should be able to operate on any user defined primitive

type if objects are templated correctly. However, much of OpenFOAM is hard coded for scalars

and a significant amount of functionality was added to facilitate the use of automatically dif-

ferentiable variables.

The next level of hierarchy shown in Figure 3.1 shows the implementation of the Field

class. This class stores lists of scalars, vectors, fadScalars, etc, and provides access to stored

58

www.manaraa.com

FadOne Primitive Types

Field<Type>

scalar, vector, tensor

fvm

Field

GeometricField<Type>

scalarField,
vectorField

fvc

mesh foam

finiteVolume

laplacian
Schemes

ddtSchemes

mesh

dimensionSet

volScalarField,
volVectorField

convection
Schemes

interpolation
Schemes

fvMatrix
Solve

Solutions to finite
volume matrices

fvMatrix

lduMatrix

Calculations using finite
volume operators

SuSp
(source terms)

Figure 3.1: Flow chart demonstrating object dependency of finite volume matrices (fvm) and
finite volume calculations (fvc)

59

www.manaraa.com

values to be utilized by operators such as ∗ or + and functions such as max or min. Fields

for carrying specific types of primitive variables are defined using typenames like scalarField

and fadScalarfield. Fields then incorporate dimension and a volume mesh in order to build

GeometricField objects - the next box in the flow chart in Figure 3.1. Specific instances of

GeometricField objects for carrying specific primitive types are defined using typenames such

as volScalarField for cell centered values and surfaceScalarField for cell face values. The

Geometricfield class matches a given Field with mesh locations for both internal fields and

boundary conditions.

The objects referred to up to this point are defined within the foam directory of Open-

FOAM and can be thought of as the most basic building blocks of the finite volume solvers.

The only exception to this is the mesh object, which is relegated to its own mesh directory.

The directory division is noted in Figure 3.1 using a dashed line and appropriate label. The

final directory described in this section is the finiteV olume directory. It contains classes for

performing finite volume operations on GeometricField objects.

There are two namespaces under which OpenFOAM performs finite volume calculations -

fvm (finite volume matrix) and fvc (finite volume calculation). Both namespaces contain func-

tions and classes used for convection, Laplacian, time difference, and interpolation operators.

The fvc namespace returns finite volume calculations using the supplied GeometricField. The

fvm namespace uses the same function calls to construct matrix coefficients used to solve for

a given GeometricField. fvm operations therefore also require the fvMatrix class in order to

transfer coefficients of operations like divergence or diffusion to a matrix and vector source

term. The fvMatrix class is inherited from the lduMatrix class defined in the foam directory

and stores non-zero matrix values in diagonal, lower, and upper arrays.

This brief discussion of OpenFOAM’s object hierarchy was intended to illustrate the flow

of primitive type object dependence. In order to develope an AD capability using FadOne,

OpenFOAM objects used for finite volume calculations must be altered so that they are able

to operate on the new fadScalar primitive type. All definitions for scalar operations must also

have definitions for the fadScalar class, and all vector operations must also have definitions

for the fadVector class, etc. In this way, functions defined in the fvc namespace that return

calculations such as divergence, Laplacian, and interpolation will return the appropriate finite

volume calculation as well as the derivative of each calculation with respect to user defined

variables.

Although fvm functions must also be able to operate on FadOne objects, no linear solves are

60

www.manaraa.com

performed using fadScalar variables. The only operations that return derivatives are contained

within the fvc namespace. In order to construct the pressure equation, discrete matrix diagonal

and off-diagonal arrays are necessary according to the methodology shown in section 2.2.1. As

a result, matrices of fadScalar variables are constructed but not solved.

3.3 Jacobian Implementation in Basic Laplacian Solver

In order to verify automatic differentiation capability, a Jacobian matrix was built for a basic

Laplacian solver. The finite volume Laplacian function was thought to be the most complex

of the solver functions with regards to the OpenFOAM algorithm, and successful Laplacian

implementation would indicate the ability to automatically differentiate other functions. The

solver laplacianFoam solves the following equation

∂T

∂t
−∇ · (DT ∇T) = 0 (3.1)

T |t=0 = Tinitial T |δS = TS (3.2)

This equation is analogous to the conduction of temperature according to a diffusion coefficient

DT . For simplicity, DT is constant. The OpenFOAM implementation of this equation is

1 solve

2 (

3 fvm::ddt(T) - fvm::laplacian(DT, T)

4);

If boundary conditions do not vary with time, this equation has a steady state solution.

A simple 5 × 5, 2 dimensional mesh was used, and the solution to this Laplacian problem is

shown in Figure 3.2. The left and right hand boundary conditions are equal to 100, and the top

and bottom boundary conditions are equal to 500. The discrete solution shown in Figure 3.2 is

represented by ~To = [T1 T2 · · ·T25]To .

For constant diffusion coefficients, the Laplacian operator is simply a second derivative with

respect to space and is self adjoint. The discrete matrix constructed using fvm::laplacian(DT,T)

will be symmetric and is also self adjoint since A = AT .

To develop a Jacobian for the discrete Laplacian matrix operator using automatic dif-

ferentiation, we perturb the original Laplacian equation by introducing a source term ~q =

[100 100 . . . 100]T .

61

www.manaraa.com

Figure 3.2: Steady state solution to the Laplacian equation using a constant diffusion coefficient

The Taylor series expansion of the discrete Laplacian operator F operating on ∆~T = ~T − ~To

is as follows

∂F

∂ ~T

(
~T − ~To

)
= F(~T)− F(~To) = ~q (3.3)

Since F is linear with respect to ~T , the Jacobian matrix is trivial and is simply given by
∂F

∂ ~T
= F.

This presents an easy to verify case to test FadOne’s ability to calculate derivatives and build

Jacobian matrices.

In order to calculate derivatives of F with respect to ~T , a volFadScalarField called fT is

built and operated on using fvc functions to propagate the Jacobian matrix. The fadScalar

primitive type is defined at compilation as

5 typedef FadOne<scalar, 25> fadScalar

The fadScalar field fT is initialized using the following code

5 for(i = 0; i < fT.size(); i++)

62

www.manaraa.com

6 {

7 fT[i] = T[i];

8 fT[i].deriv(i) = 1.0;

9 }

This sets the discrete value of fT equal to the value of T on line 7, and also sets the derivatives

of fT on line 8 such that
∂Ti
∂Ti

= 1 and
∂Ti
∂Tj

= 0. With the fvc::laplacian() function properly

defined to handle FadOne primitive types, the function call to propagate the Jacobian matrix

is simply

10 volFadScalarField J

11 (

12 -fvc::laplacian(DT, fT)

13);

This demonstrates the proper templating and operator overloading of this fvc function in

that the same function call is made for both the scalar field T and the fadScalar field fT. The

volFadScalarField J now contains the residual of the F~T = ~0 operation and all derivatives

with respect to each spatial location. This field of derivatives will be the 25 × 25 Jacobian

matrix, and J should be equal to F. The calculation using the Taylor series expansion reveals

this to be true, and the solution to

J
(
~T − ~To

)
= ~q

is exactly equal to

F
(
~T − ~To

)
= ~q

This is visible in figures 3.3 and 3.4, and the solutions in each figure are the exact same. The

physical implication of introducing a source term to the Laplacian equation is the addition of

volumetric heat generation to a heat conduction problem. As a result, the increase in scalar

field T is dramatic and follows a parabolic shape with the maximum temperature located at

the center cell. The difference between the fields calculated using the J and F was no greater

than 5× 10−4

63

www.manaraa.com

Figure 3.3: Solution to the perturbed Laplacian equation using the exact Jacobian matrix
calculated from automatic differentiation

Figure 3.4: Solution to the perturbed Laplacian equation using the discrete Laplacian matrix

64

www.manaraa.com

The internal fadScalarField for J returned by the fvc::laplacian operation is tridagonal

with fringes and is shown below.

2.7e-06 | 0.75 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

-1.5e-05| -0.125 0.625 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

9.0e-06 | 0 -0.125 0.625 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

8.3e-06 | 0 0 -0.125 0.625 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

3.3e-06 | 0 0 0 -0.125 0.75 0 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

1.2e-05 | -0.125 0 0 0 0 0.625 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

-3.7e-06| 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0 0 0]

-1.7e-05| 0 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0 0]

-1.0e-05| 0 0 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0 0]

1.6e-05 | 0 0 0 0 -0.125 0 0 0 -0.125 0.625 0 0 0 0 -0.125 0 0 0 0 0 0 0 0 0 0]

-1.1e-05| 0 0 0 0 0 -0.125 0 0 0 0 0.625 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0 0]

1.4e-05 | 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0 0]

-6.1e-06| 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0 0 0 0 0 0 0]

5.4e-06 | 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0 0 0 0 0 0]

4.7-06 0| 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.625 0 0 0 0 -0.125 0 0 0 0 0]

-1.1e-05| 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 0 0.625 -0.125 0 0 0 -0.125 0 0 0 0]

-4.2e-06| 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0 0 0]

1.9e-06 | 0 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0 0]

4.9e-06 | 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.5 -0.125 0 0 0 -0.125 0]

4.6e-06 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.625 0 0 0 0 -0.125]

-2.4e-06| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 0 0.75 -0.125 0 0 0]

-1.4e-05| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.625 -0.125 0 0]

2.4e-05 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.625 -0.125 0]

1.5e-07 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.625 -0.125]

2.7e-06 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.125 0 0 0 -0.125 0.75]

65

www.manaraa.com

The residual in the first column is the same as the tolerance of the linear solver used by

OpenFOAM. A symmetric matrix is clearly visible and is exactly equal to the coefficients used

to build F.

3.3.1 OpenFOAM Matrix Methodology

This implementation of automatic differentiation requires derivative values for all spatial loca-

tions, which are mostly zero. The subsequent Jacobian must store a full matrix of coefficients,

which are mostly zero as well. If there are n cells and m variables for a given solver, then the

Jacobian matrix will contain (nm)2 values. Storage of full matrices is not feasible for meshes

with n > 102; this is a major shortcoming of the current Jacobian implementation.

OpenFOAM stores sparse matrices using an LDU methodology and addressing array. Each

cell will have one diagonal coefficient for cell centered values and one off diagonal coefficient for

each cell face. The lower and upper triangles are therefore addressed using cell faces, while the

matrix diagonal is addressed using cell centers. This coefficient addressing scheme is the exact

same array used by the mesh to assign cell volumes and faces to appropriate cell locations. Be-

cause OpenFOAM uses a compact computational molecule, the matrix structure of discretized

divergence, Laplacian, and time differencing operators is known, and their appropriate matrix

structure is based solely on the mesh.

Jacobian matrices used for adjoint problems do not use this compact computational stencil.

Proper Jacobian structure involves derivatives of all discrete matrix coefficients with respect

to all dependent variables. For coupled systems of equations involving convection, these coef-

ficients are dependent both on the flow field flux and the convected value. OpenFOAM uses

past iterate values for flux, but we desire to capture current time dependence on both flux and

the convected field. This computational molecule is not known, and Jacobian matrices cannot

propagate discrete values intuitively using the mesh using the LDU methodology inherent in

OpenFOAM.

As a result, current adjoint capability constructed for the multiphase flow equations is lim-

ited based on the virtual memory of the computational platform. Storing full matrices is costly,

and two dimensional pipe mesh size for multiphase CFD Jacobian construction is limited to

around 200 cells. It may be possible in the future to construct Jacobian matrices in the intu-

itive way that OpenFOAM builds its discrete matrices such that the computational molecule

for finite volume operations is known beforehand. This will require the current mesh addressing

array implementation and automatic differentiation to work in concert, and it could be a future

66

www.manaraa.com

method of building sparse Jacobian matrices without a large memory requirement.

3.4 Jacobian Implementation in boilEulerFoam

The multiphase flow solver boilEulerFoam solves for void fraction, velocity, pressure, turbulent

dispersion, and turbulent kinetic energy. The Jacobian of this system of equations must take

derivatives with respect to all variables at all spatial locations. The Jacobian operator for

boilEulerFoam in two dimensional geometry is written as

J =
∂F

∂~φ
(3.4)

with the dependent variables

~φ =
[
~αg ~αl ~ugx ~ugy ~uly ~uly ~p

~kl ~εl

]T
(3.5)

Vectors are used to denote discrete values, and the ~φ uses phasic subscripts consistent with the

discrete equations derived in section 2.2.1. In this way, the numerical dependence of all variables

is contained within J. The implementation in boilEulerFoam is the same as the previous im-

plementation in the basic Laplacian solver such that volFadScalarfields are constructed for

each variable and fvc calculations performed to compute the residuals and propagate deriva-

tives.

Due to the necessity to store derivatives for all spatial locations, a simplified one dimensional

problem was examined using a ten cell mesh. For seven dependent variable fields solved using

a ten cell mesh, the Jacobian matrix is 70× 70 and the appropriate templating of FadOne for

Jacobian construction is

1 typedef FadOne<scalar, 70> fadScalar

A test similar to the Laplacian operator case was conducted to verify the Jacobian and test

its accuracy. For the nonlinear problem

F[~φ] = ~d

we can write a Jacobian problem using the Taylor expansion

F[~φ] = F[~φo] +
∂F

∂~φ

(
~φ− ~φo

)
+O(∆2)

67

www.manaraa.com

where O(∆2) represents the higher order terms. Using this equation, we then have a first order

approximation of a perturbation in solution field ~φ

∂F

∂~φ

(
~φ− ~φo

)
≈ F[~φ]− F[~φo] (3.6)

With equation 3.6, we have a way of checking solutions to a perturbed field ∆~φ = ~φ − ~φo

using the Jacobian determined by automatic differentiation. This is done by calcuating the

right hand side of equation 3.6 using the values of ~φ and ~φo and then solving for ∆~φ. Figures

3.5 through 3.9 show initial and perturbed solutions to void fraction, velocity (dispersed and

continuous phases), and pressure superimposed with the Jacobian solution calculated according

to equation 3.6. For this case, F 6= ∂F

∂~φ
as in the previous Laplacian problem, and the Jaco-

bian matrix includes off-diagonal terms that are dependent on other discrete variables. Wall

lubrication was removed from the momentum equation and wall dissipation was removed from

the k − ε equations for this case to be consistent with a one dimensional model. All physical

properties were held constant according to the adiabatic test cases shown in section 2.3.

The perturbation and Jacobian prediction of discrete void fraction ~αg is shown in Figure 3.5.

The red line denotes the initial solution, the dashed green line denotes the perturbed solution,

and the blue dots show the predicted Jacobian solution. The inlet value for dispersed phase

void fraction was 0.1 and the inlet value for both dispersed and continuous velocity was 1m/s.

A step function of approximately 20% of the inlet value of the dispersed phase void fraction

was used as a perturbation for four of the cells in the middle of the pipe. This perturbation

step function was thought to be irregular and drastic and could help reveal potential problems

in the Jacobian calculation.

Due to the use of micro-bubbles (DS = 0.001 mm), the solution of dispersed phase void

fraction is trivial and a constant value of 0.01 is shown in Figure 3.5, denoted by the red line.

This bubble diameter was used to increase the stability of the numerical solution. The pertur-

bation of approximately of 0.02 for ~αg is shown for the four middle cells using the dashed green

line Using equation 3.6 and the automatically differentiated Jacobian matrix, the approximated

field is shown using the blue circles, and the maximum relative error between the exact pertur-

bation and the Jacobian predicted perturbation is 0.49%. A small undershoot of the predicted

field is visible in Figure 3.5, but otherwise it can be said that the Jacobian matrix is closely

approximating the ~α perturbation and the automatic differentiation capability for the nonlinear

multiphase system of equations is working as expected. An equivalent figure for the dispersed

phase void fraction perturbation is not shown since the calculation ~αg + ~αl− 1 = 0 for this field

68

www.manaraa.com

Figure 3.5: Initial, perturbed, and Jacobian calculated dispersed phase void fraction solutions
to the one dimensional multiphase flow problem

Figure 3.6: Initial, perturbed, and Jacobian calculated pressure solutions to the one dimen-
sional multiphase flow problem

69

www.manaraa.com

Figure 3.7: Initial, perturbed, and Jacobian calculated dispersed phase velocity solutions to
the one dimensional multiphase flow problem

Figure 3.8: Initial, perturbed, and Jacobian calculated continuous phase velocity solutions to
the one dimensional multiphase flow problem

70

www.manaraa.com

Figure 3.9: Initial, perturbed, and Jacobian calculated dispersed phase void fraction using the
total variation diminishing interpolation scheme

is trivial.

Figure 3.6 shows similar results for pressure where now pressure is perturbed by 20% of the

initial value in the four middle cells. The pressure drop along the length of the one dimensional

channel is 7 × 10−3MPa and is hardly visible from the red line of the figure. The difference

between the perturbed green solution and the Jacobian calculated perturbation is close to zero

(4 × 10−6). This high degree of accuracy is likely due to the linear nature of the Laplacian

operator used in the pressure equation.

In Figure 3.7, the gas velocity is again perturbed in the same locations by 20% of the inlet

value. The Jacobian approximates the perturbation fairly well with a maximum relative error

equal to 1.6%, slightly more than the results in Figure 3.5. Figure 3.8 shows similar results

for a continuous phase velocity perturbation of 20%, but the relative error in continuous phase

velocity prediction, 0.4%, is less than the continuous phase velocity prediction. The predictor-

corrector scheme used to calculate liquid and vapor flow velocity is highly non-linear, and this

is likely the reason velocity field predictions demonstrated the highest percent error.

Visible also in figure 3.7 are slight numerical oscillations that begin at the inlet and dampens

towards the exit. This is likely due to instabilities that were added by the solution algorithm

with regards to implicit and explicit treatment of interphase momentum transfer, or this could

71

www.manaraa.com

be due to other structural instabilities contained in the discretized scheme, although the damp-

ening of the solution suggests that the overall system is stable. For the velocity prediction and

correction algorithm, special treatment was needed for the momentum equations in order to

build a Jacobian that accurately predicted velocity perturbations. It was found that treating

the drag term implicitly in the pressure and velocity equations as described in section 2.2.1

resulted in inaccurate predictions of velocity fields. Therefore, drag terms were removed from

the pressure equation, and a portion of the drag interphase momentum term was calculated

explicitly and added to the source term of the one dimensional multiphase equations. It is

unclear why the implicit treatment of drag causes inaccurate approximations of velocity. One

possible hypothesis pertains to the predictor-corrector scheme for velocity included in the PISO

algorithm. The variable dependence of the Jacobian matrix treats the predicted and corrected

velocities the same with respect to their derivatives, when numerically this is not the case. Fu-

ture work should investigate the numerical dependence and response of Jacobian calculations

with respect to predicted and corrected velocities separately.

The previous figures 3.5 through 3.8 used upwind divergence schemes to calculate face in-

terpolated values for the convection of void fraction. Upwind values interpolated to the face

are all that is necessary for a one dimensional problem with mass transport occurring only

along one axis. However, the two dimensional solutions use the TVD vanLeer interpolation

scheme for calculating face interpolated values of dispersed phase void fraction, and so Figure

3.9 shows the results using this interpolation scheme for the perturbed dispersed phase void

fraction scheme. While the initial and perturbed solutions are the same as that of Figure 3.5

the Jacobian approximated values oscillate above and below the exact value. The largest rela-

tive difference for this case is 11% and the L2 norm for the perturbed region is | ~αg|2 = 0.02.

This difference is likely due to the highly non-linear nature of the flux weighted vanLeer total

variation diminished interpolation scheme.

Figures 3.10 and 3.11 show log-log plots of perturbations in ~φ verses the difference between

the Jacobian calculated solution and the exact value. Upwinding was used for interpolation,

and perturbations include all field values. For Figure 3.10, the final cell was omitted in the

calculation of the L2 norm due to some irregularities in the interpolation of the exit value

boundary condition. Perturbations only occur in the field of interest for each of the cases. Re-

gressions of the L2 norm in both figures show a decrease in the error associated with linearizing

the operator, i.e. using a Jacobian, as the amount perturbed decreases. The order of error for

perturbations in ~αg is approximately 1.6, and the order of L2 norm error for perturbations in

~ug is approximately 0.9. Using a Taylor series introduces a O(∆2) error in the conservation

equations, implying one would have expected an order of L2 norm error of 2.

72

www.manaraa.com

Figure 3.10: Log-log plot of L2 norms verses perturbation size for dispersed phase void fraction
solutions with linear regression

Figure 3.11: Log-log plot of L2 norms verses perturbation size for dispersed phase velocity
solutions with linear regression

73

www.manaraa.com

The results presented in this section give us good confidence that the automatic differentia-

tion capability for calculating Jacobians of nonlinear multiphase systems is producing expected

results and is suited for use in calculating multiphase adjoints.

74

www.manaraa.com

Chapter 4

Adjoint Methodology and Results

This chapter presents the adjoint methodology used with application to the multiphase RANS

system of equations and applies it to a preliminary sensitivity analysis of interphase momen-

tum closure relationships. First, we demonstrate two separate methods for deriving adjoints for

nonlinear systems of equations - the method of Lagrange multipliers or fluids approach and the

generalized functional response or physics approach. These methods are shown to be the same,

and both derive the same adjoint operator. Following this, a specific adjoint problem is derived

as it relates to the multiphase CFD system of equations with application to sensitivity analy-

sis, and adjoints are used to approximate sensitivity responses for perturbations in interphase

momentum transfer coefficients.

4.1 Adjoint Problem Derivation - Fluids vs. Physics Methods

In the derivation of an adjoint problem, there are many degrees of freedom left up to designers

that must be properly defined in order to return desired responses. These responses could be

the sensitivity of void distribution to interphase momentum constants, nuclear crosssections, or

the porosity of a boundary condition made to minimize pressure drop. In either case, the fluids

community and neutron physics community have separate methodologies for deriving adjoint

problems. The fluids community uses the method of Lagrangian multipliers, while the physics

community develops the adjoint directly from the definition of adjoint operators and functional

responses.

Because this thesis examines a fluids problem with application to nuclear reactor design,

both methods are examined. The first section presents the method of Lagrange multipliers,

traditionally used by the fluids community with application to optimization. The second section

presents the direct mathematical derivation used in most neutron physics applications and is

75

www.manaraa.com

applied to a finite-element CFD code.

4.1.1 The Method of Lagrange Multipliers

Consider a two dimensional problem subject to the following constraints

� minimize f(x, y)

� g(x, y) = c

Points (x∗, y∗) are sought such that f(x∗, y∗) does not change as one incrementally moves

while following the contour given by the state equation g(x, y) = c. Under such conditions, there

is a contour of f such that f(x, y) = d in the vicinity of (x∗, y∗), indicating that the contours

of f and g are parallel. The second possibility is that f is level and does not change regardless

of the direction.

If both contours are parallel, then the gradients of f and g share the same direction since, by

definition, the gradient of a function is perpendicular to its contour. We then have the following

expression

∇f = −φ∗∇g

The constant φ∗ is the Lagrangian multiplier and is necessary to ensure equality due to the fact

that the magnitudes of the gradients are not always equal. Writing the Lagrangian or adjoined

equation

Λ(x, y) = f(x, y) + φ∗ · (g(x, y))

the point (x, y) can be solved using the previous two expressions, noting that at the stationary

point we have

∇Λ(x, y) = 0

This gives us an initial motivation for the derivation of an adjoined or adjoint problem using

Lagrange multipliers.

Lagrangian Formulation as Derived by Stengel in Stochastic Optimal Control[58]

Starting with a scalar cost function C(~u), we define the following:

� C(~u), scalar cost function

76

www.manaraa.com

� ~u, m× 1 control vector

� A(~u) = 0, scalar equality constraint

where m components of ~u must be specified to constrain the minimum of C(~u). Using the scalar

equality constraint, there are now m− 1 independent components of ~u.

For the Lagrange-Euler equation, we define:

� A(~u′), n× 1 vector equality constraint

� ~u′, (m+ n)× 1 vector

The n components of ~u′ are specified as functions of the remaining m terms. These remaining

m terms are varied until C(~u′) is at a minimum.

Partitioning ~u, we have

C(~u′) = C(~ua, ~ub), to be minimized

A(~u′) = A(~ua, ~ub) = ~0, ~u′ = [~ua ~ub]
T

The n components of ~ua are specified by A(~u′) = ~0. The m terms of ~ub are varied to obtain the

minimum of C(~u)

Let

~φ = ~ua

~u = ~ub

where ~φ is the state vector and ~u is the control vector.

In order to find the minimum of the cost function, A(~u) must be substituted into C(~u),

which is often difficult. An alternative approach introduces the method of Lagrange Multipli-

ers. Motivated by the previous discussion on function contours, we consider the augmented cost

function CA such that

CA(~φ, ~u) = C(~φ, ~u) + (~φ∗)TA(~φ, ~u)

77

www.manaraa.com

which will be minimized with respect to ~u. Here, the inner product of the n × 1 vector of La-

grange multipliers, ~φ∗, and the equations of state is adjoined to the original cost function. The

stationary condition A(~φ, ~u) = ~0 ensures the inner product with the Lagrange multipliers or

adjoint solution ~φ∗ always equals zero for ~φ and ~u that satisfy the state function. The n values

of the adjoint ~φ∗ must be found to minimize CA and subsequently C.

The following specifies the (m+ 2n) system of equations

� n for ~φ∗

� n for ~φ

� m for ~u

Performing the first order Taylor expansion of the perturbed optimum C∗A around
~φ, ~u = ~φo, ~uo

∆CA =
∂CA

∂~φ

∣∣∣∣
~φo, ~uo

∆~φ+
∂CA
∂~u

∣∣∣∣
~φo, ~uo

∆~u+O(∆2)

with the following partial derivatives

∂CA

∂~φ
=
∂C

∂~φ
+ (~φ∗)T

∂A

∂~φ

∂CA
∂~u

=
∂C

∂~u
+ (~φ∗)T

∂A

∂~u

where the partial derivative
∂A

∂~φ
defines the n× n Jacobian matrix

∂A

∂~φ
=

∂A1

∂φ1

∂A1

∂φ2
. . .

∂A1

∂φn

∂A2

∂φ1

∂A2

∂φ2
...

. . .
∂An
∂φ1

∂An
∂φn

and

∂A

∂~u
defines the n×m Jacobian matrix

78

www.manaraa.com

∂A

∂~u
=

∂A1

∂u1

∂u1

∂u2
. . .

∂A1

∂um

∂A2

∂u1

∂u2

∂u2
...

. . .
∂An
∂u1

∂An
∂um

We require the Lagrangian or adjoined cost function to be stationary with respect to the

~φ state vector. Starting with the previously defined partial derivative of CA, we derive an

expression for the adjoint vector.

∂CA

∂~φ
=
∂C

∂~φ
+ (~φ∗)T

∂A

∂~φ
= ~0

(~φ∗)T
∂A

∂~φ
= −∂C

∂~φ

(~φ∗)T = −

[(
∂C

∂~φ

)(
∂A

∂~φ

)−1
]

~φ∗ = −

[(
∂A

∂~φ

)−1
]T (

∂C

∂~φ

)T
This establishes n equations to find ~φ∗. The partial derivatives are evaluated in the vicinity

of the stationary point ~φ = ~φo, ~u = ~uo. The first order approximation of perturbations in the

cost function now becomes

∆CA =
∂CA
∂~u

∆~u =

(
∂C

∂~u
+ (~φ∗)T

∂A

∂~u

)
∆~u = 0

Note that ∆CA = 0 when ~uo, ~φo indicates the minimum of C. We then have for arbitrary

variations in the control

∂C

∂~u
+ (φ∗)T

∂A

∂~u
= ~0

which provides m equations for the control vector. The state equations

A(~φ, ~u) = ~0

provides the last n equations to close the system. This method returns the minimum of a cost

function subject to state equations without substituting these state equations back into the

79

www.manaraa.com

original cost function, which in practice is most times not feasible.

4.1.2 Direct Adjoint Derivation - Implementation for Error Estimates in

Drekar:CFD [30] - [32]

Drekar is a finite element based CFD code developed by Sandia National Laboratories to ad-

dress single phase flow problems. This section investigates the adjoint method applied within

the code for the purpose of a posteriori error estimation. It follows a set of unlimited release

reports authored by Timothy M. Wildey et. al.

The system of partial differential equations is defined as

A(~φ) = ~0

We define ~e = ~φ− ~φo, and, applying the integral mean value theorem, we have a set of equations

for A(~̄φ) that lies on the line ~e such that

A′(~̄φ) =
A(~φ)−A(~φo)

~e

Taking the Taylor Expansion of A(~φ) about ~φo, we have

A(~φ) = A(~φo) + A′(~φo)(~φ− ~φo) +O(∆2)

Substituting ~e and rearranging terms yields

A′(~φo)~e = A(~φ)−A(~φo) +O(∆2)

which supplies a linear operator J such that

J~e = A′(~φo)~e = A(~φ)−A(~φo) +O(∆2)

In this example, J is the Jacobian matrix
∂A

∂~φ
and is used in the computing step for Newtons

whose availability is often taken advantage of for the discrete adjoint formulation.

Equating ~φo to the true solution and ~φ to an approximate solution, we can now solve for

the error ~e using the linear operator along with the adjoint expression

80

www.manaraa.com

J∗~φ∗ = ~Q∗

where

~Q∗ =
∂

∂~e

(
~fR, ~e

)
= ~fR

and ~fR denotes the response vector. It then follows that

(
~fR, ~e

)
=
(
~Q∗, ~e

)
=
(
J∗~φ∗, ~e

)
=
(
~φ∗,J~e

)
=
(
~φ∗,A(~φ)−A(~φo) +O(∆2)

)
=
(
~φ∗, ~r

)
+O(∆2)

(4.1)

where the residual is defined as

~r = A(~φ)−A(~φo)

Similar to the generalized physics approach, the result is a weighted residual given by the inner

product
(
~φ∗, ~r

)
that approximates the response.

Using the definition of the adjoints of matrices, the adjoint linear operator J∗ is simply the

transpose of the Jacobian matrix [65].

J∗ = JT

Therefore, solving the adjoint equation with the appropriate Jacobian matrix leads to a first

order accurate approximation of the error in the response of approximating A(~φ) about an

initial solution ~φo.

The adjoint approach can be used both for a posteriori error estimation as well as sensitivity

parameter analysis. In each case, the adjoint formulation is only dependent on the definition of

the response vector ~fR. The adjoint solution is not dependent on the residual, and a variety of

conditions and quantities of interest can be estimated using a single adjoint solution.

4.1.3 Comparison of Lagrangian and Physics Methodology

The physics and fluids communities each derive the adjoint problem using two separate method-

ologies, described here as the Physics and Lagrangian methods respectively. The method pre-

sented in the previous section is the generally accepted adjoint problem derivation for nonlinear

systems as pioneered by the neutron physics community. Though this is the commonly accepted

81

www.manaraa.com

methodology, the computational fluids community often prefers the method of Lagrange Mul-

tipliers for optimizing a cost function. Here, we compare the Lagrangian and Physics approach

and show that the methods are one in the same

Lagrangian:

(~φ∗)T
∂A

∂~φ
= −∂C

∂~φ

Physics: (
∂A

∂~φ

)T
~φ∗ = ~Q∗

Starting with the Lagrangian form of the adjoint equation, we can derive the physics form

with a given right hand side for the optimization problem.

(~φ∗)T
∂A

∂~φ
= −∂C

∂~φ(
(~φ∗)T

∂A

∂~φ

)T
=

(
−∂C
∂~φ

)T
(
∂A

∂~φ

)T
~φ∗ =

(
−∂C
∂~φ

)T
This suggests that for quantities of interest relating to optimization, e.g. the extrema of cost

function derivatives, the right hand side of the physics formulation must be such that

~Q∗ =

(
−∂C
∂~φ

)T
Regardless the nature of ~Q∗, both methods require the transpose of the Jacobian matrix of the

forward state equations in order to solve for the adjoint solution.

4.2 Derivation of Multiphase Adjoint Problem with Applica-

tion to Sensitivity Analysis

We use a similar methodology to the physics approach in order to derive the adjoint problem

for the multiphase CFD equations with application to sensitivity analysis.

The nonlinear multiphase RANS system of equations is written as

F(~φ) = ~d (4.2)

82

www.manaraa.com

where F contains the multiphase continuity, momentum, and turbulence equations for adiabatic

flow, and the ~φ contains solutions for void fraction, velocity, pressure, turbulent kinetic energy,

and turbulent dispersion according to

~φ =
[
~αg ~αl ~ugx ~ugy ~uly ~uly ~p

~kl ~εl

]T
For sensitivity analysis, we are interested in a perturbed problem

F′(~φ′) = ~d′ (4.3)

with perturbed solution

~φ′ = ~φ+ ∆~φ (4.4)

and perturbed source

~d′ = ~d+ ∆~d (4.5)

Writing

F′(~φ′) = F(~φ) + ∆F(∆~φ) (4.6)

and substituting 4.2 and 4.3 into equation 4.6, we have

∆F(~φ) = ∆~d (4.7)

Using a Taylor’s series expansion, we have a first order approximation of ∆~d given by

∆~d =
∂ ~d

∂a
∆a+O(∆2) (4.8)

where ∆a is some perturbation parameter a appearing in the source term. Because we are seek-

ing the sensitivity with respect to parameter a, there is only one partial derivative in equation

4.8.

In the same way, if the nonlinear operator F is also dependent upon parameter a, then a

first order approximation of ∆F is given by

∆F =
∂F(~φ)

∂a
∆a+

∂F(~φ)

∂~φ
∆~φ+O(∆2) (4.9)

Rearranging equation 4.9, ignoring higher order terms, and substituting in equations 4.7 and

83

www.manaraa.com

4.8, we have the following expression

∂F(~φ)

∂~φ
[∆~φ] ≈ ∂ ~d

∂a
∆a− ∂F(~φ)

∂a
∆a (4.10)

Equation 4.10 is a linear problem that solves for perturbed solutions of ~φ using a right hand

side that is not dependent on ∆~φ.

Let J be the Jacobian matrix of F with respect to ~φ. We then have the following forward

problem

J[∆~φ] = ~Q (4.11)

with

~Q =
∂ ~d

∂a
∆a− ∂F(~φ)

∂a
∆a (4.12)

and adjoint problem

J∗[~φ∗] = ~Q∗ (4.13)

where JT = J∗ according to the definition of the adjoint of a matrix [65]. In order to properly

define ~Q∗ for the adjoint problem, we define the following inner product of a response function

∆R =
(
~fR,∆~φ

)
(4.14)

This response is used to define ~Q∗. For example, if the desired ∆R response is the change in

void fraction αg in a specific control volume, then the response function is

~Q∗ = ~fR (4.15)

where the discrete response vector is

(~fR)i =

1, index i corresponds to αg for specific control volume

0, otherwise

Examining the inner product of ~Q∗ and ∆~φ and applying the definition of mathematical

adjoints

∆R =
(
~fR,∆~φ

)
=
(
~Q∗,∆~φ

)
=
(
J∗[~φ],∆~φ

)
=
(
~φ∗,J[∆~φ]

)
=
(
~φ∗, ~Q

)
(4.16)

84

www.manaraa.com

which gives us the response ∆R in terms of ~φ∗ and ~Q only. Because ~Q is dependent on perturbed

operators as shown in equation 4.12, we can estimate responses for various perturbed parameters

of F without needing to resolve for ∆~φ. The equality in equation 4.16 is exact, and the only

approximation occurs in the linearization of the F operator. Therefore, adjoint approximations

of sensitivities is limited by the linearization of the F operator.

4.3 Adjoint Sensitivity Analysis of Interphase Momentum Trans-

fer Terms

This section investigates perturbations in interphase transfer coefficients and uses Jacobian ma-

trices and adjoint calculations to approximate the response of these perturbations with respect

to dispersed phase void profiles. As shown previously in section 2.3, dispersed phase void pro-

files are dependent on interphase momentum transfer closure laws, and sensitivities of these

parameters are of interest to multiphase CFD developers.

The perturbations are carried out on the multiphase equations adjusted for highest Jacobian

accuracy as described in section 3.3.1. Specifically, drag terms are removed from the pressure

equation and placed into the momentum equation source term. Due to the large memory re-

quirements of automatic differentiation and the storage of full Jacobian matrices, the size of

the channel was drastically reduced. Channel size is, however, long enough to establish a pre-

liminary void profile for use in adjoint sensitivity analysis.

Table 4.1 shows input parameters for adjoint sensitivity calculations of interphase momen-

tum transfer terms. The perturbed case using altered interphase momentum coefficients is

solved iteratively along with the initial case. Upwinding is used to calculate the interpolated

convection terms with regards to dispersed phase void fraction.

Figure 4.1 shows the two dimensional pipe mesh used for the interphase momentum pertur-

bation response studies. This figure is to scale. Flow still occurs from left to right, and gravity

acts in the negative z direction. The mesh size is reduced to 10 radial cells by 20 axial cells

due to the memory requirements of Jacobian construction. This reduced mesh size is still able

to resolve initial flow fields and perturbations in void fraction with respect to interphase mo-

mentum transfer closure relationships. Equation 4.10 is used to calculate an approximate ∆φ̃

response, and this approximation is compared to the exact difference between the initial and

perturbed cases. An intrinsic to OpenFOAM LU solver with partial pivoting is used to solve

for the Jacobian approximated solution.

85

www.manaraa.com

Table 4.1: Adjoint Sensitivity Response Input Parameters

Parameter OF Variable Value

Pipe Diameter Dh 1.5cm
Pipe Length L 15cm
Inlet Pressure p 4.5 MPa
Inlet Void alphaair 0.1
Inlet Liquid Velocity Uwater 1.01 m/s
Inlet Vapor Velocity Uair 1.0 m/s
Bubble Diameter Ds 0.7mm
Wall Heat Flux qWall 0 kW

Axial (z) flow direction, L = 0.15m

Radial (r) direction, R = 0.015m

Figure 4.1: Representative mesh for the 2D pipe with radial symmetry used in the interphase
momentum transfer coefficient perturbation response study

Each interphase momentum transfer coefficient was held constant for its respective pertur-

bation study. This is required according to the formulation shown in equation 4.12, since it is

assumed that ∆a is a scalar value. The right hand side ~Q for the forward problem is calculated

using automatic differentiation with respect to the perturbed parameter ∆a according to equa-

tion 4.12. If a were a vector of values, then partial derivatives with respect to ~a would require

additional Jacobian construction, further limiting available memory,. Alternatively, ~Q could be

expressed by ~Q = ∆~d+
(
F′[~φ]− F[~φ]

)
. This preliminary sensitivity analysis examines changes

in the void profile for perturbations in drag, lift, and wall lubrication coefficients. Perturbations

are carried out on steady state solutions.

This sensitivity study only examines perturbations in void ∆~αg for specific regions of interest

as defined by ~Q∗ in equation 4.15. For simplicity,

86

www.manaraa.com

(~Q∗)i =

1, index i corresponds to αg for specific control volumes

0, otherwise

and the inner product (~Q∗,∆~φ) returns the summation of ∆~αg for various spatial regions of

interest within the pipe. The response for various ~Q∗ functionals is calculated using the exact

∆~φ perturbed values and the adjoint ~φ∗ solution according to equation 4.16.

4.3.1 Adjoint Sensitivity Response Prediction for Drag Interphase Momen-

tum Transfer Coefficient Perturbations

This section investigates perturbations in the drag interphase momentum transfer coefficient

and approximated adjoint responses. The modified drag coefficient used to calculate the sensi-

tivity response is given by the following equation

~MD
g = −CD

3

4

ρl
DS

αg |~ur| (~ur) (4.17)

where the relative velocity is ~ur = ~ug − ~ul and CD was held constant for the initial case and

perturbed by a percentage for the sensitivity responses. This drag expression returns the actual

term added to the dispersed phase momentum equation and therefore includes the
1

ρg
term.

Table 4.2 lists the physical parameters and interphase momentum transfer models used for this

drag sensitivity study.

Table 4.2: Drag Sensitivity Response Parameters and Interphase Momentum Mod-
els

Parameter OF Variable Value

Bubble Diameter Ds 0.7mm
Frank Wall Model Coefficients Cwc, Cwd, p 10.0, 6.8, 1.7
Constant Lift Coefficient Cl 0.001
Constant Turbulent Dispersion Coefficient Ctd 0.01
Constant Virtual Mass Coefficient Cvm 0.5
Constant Base Drag Coefficient Cd 1.6

This drag sensitivity response analysis increased the drag coefficient by 10% and solved the per-

87

www.manaraa.com

turb case iteratively alongside of the initial case using listed parameters. Figures 4.2 through

4.4 show initial and perturbed void profiles for three axial locations.

In Figure 4.2, the initial ~αg profile at 2cm is shown using a red line and the perturbed profile

is shown using a dashed green line. The bulk void is 0.002 lower than the inlet value of 0.1, and

the void peaks at 0.12 in the near-wall region. The sharpness of this peak distribution is due

to the coarseness of the mesh. There is little visible difference at this axial location between the

initial and perturbed solutions, although the peak void for the perturbed case is slightly lower

than the initial case.

In Figure 4.3, the difference at 7cm between the initial red line and perturbed green line is

noticeable in the near-wall peak region. The initial case still shows a sharp peak in void while

the perturbed case is rounded. Figure 4.4 shows the pipe exit void profile, and again the differ-

ences between the perturbed profile and initial profile are small but still visible in the near-wall

peak.

Figure 4.5 plots the exact ∆~αg perturbation alongside the approximated ∆α̃g perturbation.

The red line denotes the exact perturbation and the green dashed line denotes the approximation

calculated using the Jacobian matrix. The vectors are indexed according to OpenFOAM’s mesh

cell ordering scheme, which is specified by the cell index vector ~Cr,l where r is the radial index

and l is the axial index of the pipe. If there are R radial cells and L axial cells, then ~Cr,l is

indexed according to

~Cr,l = [C0,0 C0,1 C0,2 . . . C0,L C1,0 C1,1 . . . CR,L]T

Figure 4.5 shows that the largest perturbations in ~αg occur along the wall. This is consistent

with earlier plots of perturbed void profiles. The Jacobian approximation replicates the general

shape of the exact perturbation, especially in areas where the magnitude is larger than 0.001.

At index locations 0 through 100, the Jacobian returns a reflected response across the x = 0

axis. The reason for this numerical behavior is unknown. For indexes larger than 100, the ap-

proximated perturbation follows the exact value above and below the x = 0 axis, undershooting

the highest perturbation of ∆~αg = 0.01 by around 20%.

88

www.manaraa.com

Figure 4.2: Initial and Perturbed void profiles for a 10% increase in the drag coefficient for
axial location L = 2cm

Figure 4.3: Initial and Perturbed void profiles for a 10% increase in the drag coefficient for
axial location L = 7cm

89

www.manaraa.com

Figure 4.4: Initial and Perturbed void profiles for a 10% increase in the drag coefficient for
axial location L = 15cm

Figure 4.5: Exact perturbations ∆~αg and Jacobian approximated ∆α̃g for pipe mesh cell in-
dices for perturbed drag coefficients

Figure 4.6 shows the log-log plot of ∆a perturbation size verses the L2 normal of the dif-

ference between the exact ∆~αg perturbation and the approximate ∆α̃g perturbation. For the

drag perturbed case, ∆a = ∆CD where CD is the drag coefficient. There is a strong log-linear

90

www.manaraa.com

relationship between the L2 norm and ∆CD whose slope is close to 1. A slope of 1 suggests a

linear relationship between the L2 norm and ∆CD. An order of 2 is expected for Taylor series

approximations that ignore O(∆2) terms.

Figure 4.6: Log-log plot of log(∆CD) vs. log(||∆~αg −∆α̃g||2) and linear regression

From Figures 4.5 and 4.6, it can be said that the Jacobian matrix is approximating pertur-

bations in void with a reasonable order of error for a 10% increase in drag coefficient. These

exact and approximate values were then used to calculate perturbation responses for various

locations of interest as defined by the functional ~Q∗. It’s clear from Figure 4.5 that functionals

capturing near wall locations will not only capture the largest of the perturbations, but will also

return more favorable responses. Bulk flow regions, however, will not return accurate responses

if judged by percntage error in predicting the perturbation, but in terms of absolute error this

error is small.

Figure 4.7 shows the exact and adjoint calculated responses for five regions of interest within

the pipe. Note that for a linear operator where only the source term is perturbed, the adjoint

method is exact, and the approximate (Jacobian based) and adjoint approximated perturbation

values are equal. The graphic on the left hand side shows a primitive diagram of ~Q∗ spatial

locations in the pipe that were used to generate the response. The mesh used is still the 10×20

91

www.manaraa.com

Exact Response Adjoint Response
Q1* 0.149 0.094

Exact Response Adjoint Response
Q2* -0.087 -0.086

Exact Response Adjoint Response
Q3* 0.021 -0.042

Exact Response Adjoint Response
Q4* 0.034 -0.024

Exact Response Adjoint Response
Q5* 0.049 -0.009

Figure 4.7: Exact and adjoint responses with respect to drag coefficient perturbations for
various ~Q∗ regions of interest

92

www.manaraa.com

axially symmetric pipe from Figure 4.1, and the simplified drawing only illustrates the general

location of ~Q∗ used for the response. The plot in the middle shows the exact and adjoint ∆~αg

used to generate the response along with the x = 0 axis for reference. These reference plots

utilize a consistent scale to show identical ranges of perturbations.

All responses are calculated by using the summation of the products of
(

∆~φ, ~Q∗
)

or
(
~φ∗, ~Q

)
as defined by equation 4.16. ~Q1∗ returns a response for the radial mesh rings against the wall of

the pipe (indices 160-200). This region captures the largest perturbations in ∆~αg. The sign and

order of magnitude of the adjoint response are correct compared to the exact response, and the

adjoint approximates the value with 37% relative error. ~Q2∗ returns a response for near-wall

radial mesh rings (indices 120-160) and captures the peak void fraction distribution according

to Figures 4.2 through 4.4. This region of interest returns the most accurate response approx-

imation with only 1.1% relative error. ~Q3∗ returns a response for the bulk flow region of the

pipe. This is the region where approximated ∆~αg is a reflection of the exact perturbation. Here,

the sign of the approximated response is incorrect due to this reflection, though the magnitude

of the perturbation in this region is small. ~Q4∗ and ~Q5∗ return responses for the entrance and

exit of the pipe, and both also return incorrect responses due to inaccuracies in the bulk flow.

Responses in these regions are likely not valuable due to positive-negative summation of ∆~αg

terms.

It could be possible to use the magnitude of |∆φ̃| for calculating responses, especially be-

cause positive-negative summation can mask perturbations. However, properly defining ~Q∗ to

return magnitudes is problematic. The inner product relationship shown in equation 4.16 must

hold for the adjoint response to be accurate. It is possible to force ~Q∗ to be positive or negative

depending on the value of the approximated ∆φ̃, but this assumes prior knowledge of pertur-

bation profiles, and the exact (~Q∗,∆~φ) response will not be correct.

For all five functionals, the adjoint calculated response is exactly equal to the approximate

response according to equation 4.16, as noted earlier. This is because we are using the math-

ematical adjoint, and ~φ∗ returns the exact response when using the transpose of the Jacobian

matrix. In this way, we can calculate approximations for various parameter ∆a perturbation

sizes for a fixed location of interest without performing any additional linear solves. The only

necessary calculation is the calculation of ~Q =
∂ ~d

∂a
∆a− ∂F(~φ)

∂a
∆a, which is trivial using auto-

matic differentiation with a single derivative.

Table 4.3 shows execution times for various calculations performed for this adjoint pertur-

93

www.manaraa.com

bation sensitivity analysis.

Table 4.3: Execution Times for Drag Perturbation Response

Initial and Perturbed Solution Calculation 13.7s
Jacobian Initialization 93.2s
Jacobian Transpose 18.3s
Q(∆a) Calculation 1.4s

Adjoint Solution Using Five ~Q∗ Locations 0.2s

The two shortest calculations are the determination of ~Q which is required to evaluate the

(~φ∗, ~Q) response and adjoint linear solves, the latter of which takes only two-tenths of a second

due to the fact that ~Q∗ is mostly zero. The initialization and transposition of the Jacobian takes

the longest amount of time due to the large number of calculations required by automatic differ-

entiation in the forward sense. Because the response (~Q, ~φ∗) requires only the adjoint solution,

multiple responses of perturbed parameters can be determined at a fraction of the computa-

tional cost of the forward solve. In a robust sensitivity analysis that requires a distribution of

responses for a given perturbation, this computational efficiency is highly advantageous.

It could be possible to overcome the large memory requirement of Jacobian initialization by

altering automatic differentiation to store sparse matrices instead of full matrices in the same

fashion as the existing OpenFOAM LDU matrix methodology.

4.3.2 Adjoint Sensitivity Response Prediction for Lift Interphase Momen-

tum Transfer Coefficients

This section investigates perturbations in the lift interphase momentum transfer coefficient and

approximated adjoint responses. The same parameters contained in table 4.4 and the mesh

shown in Figure 4.1 are used. The modified lift interphase momentum transfer term is given by

the following equation

~ML = CLαg (~ur ×∇× ~ul)

where CL is held constant and perturbed by a factor. Table 4.4 shows interphase coefficients

used for the lift perturbation response study.

94

www.manaraa.com

Table 4.4: Lift Sensitivity Response Parameters and Interphase Momentum Models

Parameter OF Variable Value

Bubble Diameter Ds 0.7mm
Frank Wall Model Coefficients Cwc, Cwd, p 10.0, 6.8, 1.7
Constant Lift Coefficient Cl 0.8
Constant Turbulent Dispersion Coefficient Ctd 0.01
Constant Virtual Mass Coefficient Cvm 0.5
Drag Model Ishii-Zuber

In order to create perturbations large enough for analysis, this lift response study increased

the base lift coefficient by several orders of magnitude to 0.8 and perturbed the lift coefficient

by a factor of 5 or by 500%. This is significantly larger than the previous drag coefficient study

which only perturbed the coefficient by a factor of 0.1 or 10%. Figures 4.8 through 4.10 show

initial and perturbed void profiles at three axial locations. The red line denotes the initial case

void profile, and the dashed green line denotes the perturbed void profile using the increased

lift coefficient.

Figure 4.8: Initial and Perturbed void profiles for a 500% increase in the lift coefficient for
axial location L = 2cm

95

www.manaraa.com

Figure 4.9: Initial and Perturbed void profiles for a 500% increase in the lift coefficient for
axial location L = 7cm

Figure 4.10: Initial and Perturbed void profiles for a 500% increase in the lift coefficient for
axial location L = 15cm

96

www.manaraa.com

The void profiles shown in Figures 4.8 through 4.10 show a similar near-wall peak as shown

previously in Figures 4.2 through 4.4. Again, the bulk flow is slightly lower than the initial

value of 0.1, and there is a near-wall peak in void with a sharp drop in void at the wall. The

difference in shape compared to the constant drag analysis is due to the Ishii-Zuber drag co-

efficient model and the larger constant lift coefficient, the latter of which can account for the

larger near-wall peak region. Even though the lift coefficient has been perturbed by 500%, the

initial and perturbed void profiles look almost identical at all three axial locations. In Figure

4.9, there is a small but noticeable perturbation at r = 0.011cm. There are differences at other

locations which is demonstrated by the next figure, but they are small compared to the previous

drag analysis.

Figure 4.11 plots the exact ∆~αg perturbation alongside the approximated ∆α̃g perturbation.

The red line denotes the exact perturbation and the green dashed line denotes the approxima-

tion calculated using the Jacobian matrix. The cell indexing scheme is the same as used in

section 4.3.1.

Figure 4.11: Exact perturbations ∆~αg and Jacobian approximated ∆α̃g for pipe mesh cell
indices

Figure 4.11 shows that the largest perturbations occur in the near-wall region of the pipe.

This is consistent with the only visible perturbation in Figure 4.9. The red line in Figure 4.11

97

www.manaraa.com

shows the maximum exact perturbation to be only 0.0025, significantly lower than the previous

drag coefficient analysis. The green dashed line shows the Jacobian approximated perturbation

overshoots the exact perturbation by a factor of 9. The Jacobian approximated perturbation

does, however, follow the general shape and sign of the exact perturbation in the near wall

region.

Figure 4.12 shows the log-log plot of ∆CL perturbation size verses the L2 normal of the

difference between the exact ∆~αg perturbation and the approximate ∆α̃g perturbation. There

is again a strong log-linear relationship for larger ∆CL perturbations, and the slope is equal to 1.

Figure 4.12: Log-log plot of log(∆CL) vs. log(||∆~αg −∆α̃g||2) and linear regression

Figures 4.11 and 4.12 show that the Jacobian approximated calculation of ~αg with respect

to perturbed lift coefficients still can return some information about the perturbation response,

but it is less accurate than the drag perturbation study. While the magnitude of the Jacobian

approximated perturbation is too large, it does return the correct sign and shape of the per-

turbations, and the reflection across the x = 0 axis from figure 4.5 does not occur.

Figure 4.13 shows the exact and adjoint calculated responses for five regions of interest

within the pipe. The wall and near-wall regions for ~Q∗1 and ~Q∗2 have been adjusted to capture

98

www.manaraa.com

the largest positive and negative perturbed solutions from Figure 4.11 to avoid positive-negative

summation. Again, the graphic on the left hand side shows a primitive diagram of ~Q∗ spatial

locations in the pipe that were used to generate the response. The plot in the middle shows the

exact and adjoint ∆~αg used to generate the response along with the x = 0 axis for reference.

These reference plots are consistently scaled to show identical ranges of perturbations.

Exact Response Adjoint Response
Q1* -0.049 -0.43

Exact Response Adjoint Response
Q2* 0.035 0.34

Exact Response Adjoint Response
Q3* 0.0034 0.0027

Exact Response Adjoint Response
Q4* -0.0057 -0.024

Exact Response Adjoint Response
Q5* -0.0043 -0.06

Figure 4.13: Exact and adjoint responses with respect to lift coefficient perturbations for var-
ious ~Q∗ regions of interest

All of the adjoint approximated responses in Figure 4.13 with exception to ~Q∗3 return values

that are an order of magnitude larger than the exact response. This is consistent with results

99

www.manaraa.com

shown in Figure 4.11. Although the order of magnitude is incorrect, the sign is correct and

the approximated responses stay around a factor of 10 times the exact response. The adjoint

approximated response of 0.0027 returned by ~Q∗3 for the bulk flow region (indices 0-80) is the

closest to the exact value of 0.0034 with a 21% relative error.

Possible explanations for the discrepancy in magnitude could include the significantly larger

perturbation percentage (500%) as compared to the perturbed drag coefficient case. Also, the

expression used to calculate the lift force is significantly less linear than the expression used

to calculate drag. Lift requires the calculation of ~ur ×∇× ~ul, where drag is simply a factor of

|~ur| ~ur. It is curious that the magnitude difference remains fairly constant in Figure 4.11, but

the linear relationship between the L2 norm and ∆CL may indicate that the higher order terms

are more significant with respect to lift force calculations.

4.3.3 Adjoint Sensitivity Response Prediction for Wall Lubrication Inter-

phase Momentum Transfer Coefficients

This section investigates perturbations in the wall lubrication interphase momentum transfer

coefficient and approximated adjoint responses. The same parameters contained in table 4.2

and the mesh shown in Figure 4.1 are used. The modified wall interphase momentum transfer

term is given by the following equation

~MW = CWαgρl |~ur − (~ur · ~nw)~nw|2

where ~nw is the wall normal direction. Table 4.5 shows interphase coefficients used for the lift

perturbation response study.

Table 4.5: Wall Lubrication Sensitivity Response Parameters and Interphase Mo-
mentum Models

Parameter OF Variable Value

Bubble Diameter Ds 0.7mm
Constant Wall Lubrication Coefficient Cw 5.0
Constant Lift Coefficient Cl 0.001
Constant Turbulent Dispersion Coefficient Ctd 0.01
Constant Virtual Mass Coefficient Cvm 0.5
Drag Model Ishii-Zuber

100

www.manaraa.com

The constant wall lubrication coefficient CW = 5.0 was perturbed by 75% to generate an

appropriately perturbed ~αg solution for the response analysis. This is a larger perturbation than

what was used in the drag response analysis, but it’s an order of magnitude smaller than what

was used in the lift response analysis. Figures 4.14 through 4.16 show initial and perturbed void

profiles at three axial locations.

Figure 4.14: Initial and Perturbed void profiles for a 75% increase in the wall lubrication
coefficient for axial location L = 2cm

101

www.manaraa.com

Figure 4.15: Initial and Perturbed void profiles for a 75% increase in the wall lubrication
coefficient for axial location L = 7cm

Figure 4.16: Initial and Perturbed void profiles for a 75% increase in the wall lubrication
coefficient for axial location L = 15cm

The void profiles shown in Figures 4.14 through 4.16 are inverted compared to drag per-

turbed profiles in Figures 4.2 through 4.4 and lift perturbed profiles in Figures 4.8 through 4.10.

This is likely due to the constant wall lubrication coefficient as opposed to the Frank model

102

www.manaraa.com

used in the drag and lift perturbation study. The profiles shown in Figures 4.14 through 4.16

are likely not physical, but it still presents an opportunity to test adjoint accuracy and obtain

an initial understanding of wall lubrication sensitivities.

The difference in perturbed and initial void profiles in Figure 4.14 is hardly noticeable, but

Figures 4.15 and 4.16 show the difference increases dramatically towards the exit of the pipe.

The largest regions of difference occur in the bulk flow and against the wall of the pipe, while

the near-wall void trough shows almost no perturbation.

Figure 4.17 plots the exact ∆~αg perturbation alongside the approximated ∆α̃g perturbation.

The red line denotes the exact perturbation and the green dashed line denotes the approximation

calculated using the Jacobian matrix. The cell indexing scheme is the same used in section 4.3.1.

Figure 4.17: Exact perturbations ∆~αg and Jacobian approximated ∆α̃g for pipe mesh cell
indices

Figure 4.17 shows that the largest perturbations occur at the pipe exit (indices 20, 40, 60,

etc), and there is almost no change in the near-wall region of the pipe (indices 120-180). This

is consistent with the void profiles shown in Figures 4.14 through 4.16. The shape, magnitude,

and sign of the Jacobian approximated perturbed solution follow the exact solution closely.

There is no reflected response across the x = 0 axis as there was in the drag case, and there is

103

www.manaraa.com

no factor of 9 difference as there was in the lift case.

Figure 4.18 shows the log-log plot of ∆CW perturbation size verses the L2 normal of the

difference between the exact ∆~αg perturbation and the approximate ∆α̃g perturbation. There

is again a strong log-linear relationship for larger ∆CW perturbations, and the slope is also

close to 1.

Figure 4.18: Log-log plot of log(∆CW) vs. log(||∆~αg −∆α̃g||2) and linear regression

Figures 4.17 and 4.18 show that the Jacobian matrix approximates the ~αg solution well

with respect to perturbed wall lubrication coefficients. Figure 4.19 shows the exact and adjoint

calculated responses for five regions of interest within the pipe. The wall and near-wall regions

for ~Q∗1 and ~Q∗2 are the same as those used in section 4.3.1. Again, the graphic on the left hand

side shows a primitive diagram of ~Q∗ spatial locations in the pipe that were used to generate

the response. The plot in the middle shows the exact and adjoint ∆~αg used to generate the

response along with the x = 0 axis for reference. These reference plots are consistently scaled

to show identical ranges of perturbations.

Consistent with previous results, all of the adjoint approximated responses in Figure 4.19

are the same sign and magnitude as the exact responses. The largest relative error between the

104

www.manaraa.com

Exact Response Adjoint Response
Q1* -0.090 -0.11

Exact Response Adjoint Response
Q2* 0.0022 0.0028

Exact Response Adjoint Response
Q3* 0.10 0.11

Exact Response Adjoint Response
Q4* 0.0036 0.0038

Exact Response Adjoint Response
Q5* 0.0095 0.0073

Figure 4.19: Exact and adjoint responses with respect to wall lubrication coefficient perturba-
tions for various ~Q∗ regions of interest

exact and adjoint approximated response is 23% for the ~Q∗5 or pipe exit region of interest, and

the smallest relative error is 6% for the ~Q∗4 or pipe entrance region. This is the only interphase

coefficient study that returns accurate responses for the pipe entrance and exit regions of in-

terest. Unlike in the drag and lift response analysis, all ~Q∗ regions of interest return responses

that can indicate useful information about the exact perturbed ~αg solution.

It is unknown why this particular perturbed parameter returns the most accurate responses.

The |~ur − (~ur · ~nw)~nw|2 wall lubrication term is nonlinear with respect to relative velocity

similar to the nonlinear |~ur| ~ur drag term, yet the wall lubrication analysis performs better than

105

www.manaraa.com

the drag analysis. A possibility could be the semi-implicit treatment of the drag force. The drag

vapor velocity is transfered to the diagonal of the discretized vapor momentum matrix and vice

versa for the liquid velocity, while both the lift and the wall lubrication forces are calculated

explicitly and moved to the source term of the discretized momentum equations. This will have

an impact on the calculation of the mathematical adjoint, but the precise nature of this impact

is unclear. Nonetheless, this section demonstrates that adjoint approximated responses can be

a feasible means to approximate the perturbed ~αg void profiles with respect to perturbations

in interphase momentum transfer coefficients.

106

www.manaraa.com

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The multiphase CFD solver boilEulerFoam implemented in OpenFOAM was found to be a

suitable platform for the development of a multiphase adjoint capability. It was decided to

remove the subcooled nucleate boiling model and consider an adiabatic case for adjoint devel-

opment due to simplicity. Also, boilEulerFoam employs interphase momentum transfer closure

relationships that are able to closely approximate experimental values for adiabatic cases. These

closure relationships employ coefficients that are of particular interest with regards to sensitiv-

ity analysis.

Another attractive feature of boilEulerFoam and the OpenFOAM environment is that it

is written in C++ and makes full use of a logical object hierarchy. Development in this hierar-

chy is desirable and OpenFOAM is designed in such a way as to facilitate implementation of

new capability. Having full access to the source code was also necessary in order to build an

adjoint solver within boilEulerFoam. In order to build an adjoint problem, the discrete equa-

tions that solve for void fraction, velocity, pressure, and turbulence in boilEulerFoam must be

linearized. The linearization of these discrete equations requires a Jacobian matrix. Automatic

differentiation in the forward sense was used to construct a discrete Jacobian matrix containing

derivatives of all forward matrix coefficients.

Automatic differentiation was developed using the stand-alone object FadOne created by

Jasak and was implemented within the OpenFOAM finite volume framework using existing

solver methodology. A primitive count of FadOne instances found over 6,000 lines of altered

code within OpenFOAM. Finite volume solvers that return solutions to scalar and vector fields

can, using FadOne, also return fadScalar and fadVector fields that contain both values and

107

www.manaraa.com

derivatives of values. This is done automatically using templates and operator overloading.

Automatic differentiation implemented in OpenFOAM was found to build a Jacobian for a

Laplacian operator that returned the exact solution for a Laplacian equation perturbed by in-

troducing a source term. For non-coupled systems of equations, this Jacobian matrix is the same

as the discrete finite volume matrix, and the Laplacian example is trivial, but this Laplacian

test case provided verification that automatic differentiation was working correctly.

The Jacobian matrix for a one dimensional multiphase RANS problem was also examined

and a perturbation test case was used to further verify the automatic differentiation capability.

This Jacobian was built using the coupled system of equations, and it contained appropriate

off-diagonal coefficients that captured the dependency of all variables. A perturbation of ap-

proximately 20% of the field of interest, e.g. pressure, was introduced in the four central cells

of the uniform 10 cell mesh to create a perturbed system of linear equations. The Jacobian

was found to appropriately approximate the perturbation with 4 × 10−4% error, with respect

to pressure, the smallest relative error, and 1.6% error with respect to dispersed phase velocity,

the largest relative error. When using a vanLeer total variation diminishing scheme for void

fraction convection, the perturbed approximation for a 20% perturbation in dispersed phase

void fraction undershoots ~αg by 11%. The upwinded convection approximation, however, re-

turns a relative error of 0.49%. Thus, the constructed Jacobian was found to give a satisfactory

approximation of perturbed values for the one dimensional multiphase test problem.

An adjoint problem was derived for the nonlinear system of multiphase RANS equations

with application to sensitivity analysis. This derivation returns the response of a given variable

to perturbations in scalar operators for a particular field of interest. Once an adjoint solution

is found, it can be used many times for various perturbations as long as the response of inter-

est remains the same. This sensitivity analysis was performed on axi-symmetric pipe geometry

using a coarse 20 × 10 mesh due to memory constraints imposed by automatic differentiation

and Jacobian construction.

The specific sensitivity evaluation examined the responses of void fraction to perturbations

in drag, lift, and wall lubrication coefficients. The drag case perturbed the drag coefficient by

10% and calculated a perturbed void fraction. The largest perturbations in ~αg were observed

along the wall coinciding with the largest gradients of void fraction. For these regions, the Ja-

cobian approximated the perturbations with a reasonable level of accuracy. The exact response

for the wall region was 0.149, and the adjoint response was 0.094 with 37% relative error for

a perturbation of 4% of the original void fraction. The exact response for the near-wall region

was -0.087, and the adjoint response was -0.086 with a 1% relative error for a perturbation

108

www.manaraa.com

of 2% of the original void fraction. The approximated perturbation in the bulk region, when

compared to the exact perturbation, returned reflected values across the x = 0 axis. Therefore,

the exact response for the bulk flow region was 0.021, and the adjoint response was -0.042 for

a perturbation of 0.2% of the original void fraction.

The lift case perturbed the lift coefficient by a factor of 5 or by 500% and calculated a

perturbed void fraction. The largest perturbations in ~αg were observed in the near-wall void

peak region. These perturbations were an order of magnitude smaller than those calculated in

the drag coefficient analysis. The Jacobian approximated perturbation was around a factor of

9 larger than the exact perturbed solution, although there is no reflection across the x = 0 axis

as there was in the drag coefficient case. All of the approximated responses with exception to

the region corresponding to the bulk flow of the pipe were an order of magnitude larger than

the exact response, although the sign of the summation was correct. The exact response for the

bulk flow region was 0.0034, and the adjoint response was 0.0027 with a 21% relative error for a

perturbation of 0.04% of the original void fraction. The exact response for the near wall region

was 0.035, and the adjoint response was 0.34 with a factor of 9.7 difference for a perturbation

of 0.8% of the original void fraction.

The wall lubrication case perturbed wall lubrication coefficients by 75% and calculated a

perturbed void fraction. The largest perturbations in ~αg were observed towards the exit in both

the bulk flow region and against the wall of the pipe. The Jacobian approximated perturbation

closely followed the shape, magnitude, and sign of the exact perturbed solution. The exact

response for the pipe exit region was 0.0095, and the adjoint response was 0.0073 with a 23%

relative error for a perturbation of 0.1% of the original void fraction. This was the largest rela-

tive error of these adjoint responses. The exact response for the pipe entrance was 0.0036, and

the adjoint response was 0.0038 with a relative error of 6% for a perturbation of 0.03% of the

original void fraction. This was the smallest relative error of these adjoint responses. The wall

lubrication coefficient case was the only case to return reasonable response approximations for

the pipe entrance and exit regions.

The computation time for the adjoint solution for five separate regions of interest was sub-

stantially less than the computation time for the initial and perturbed solution - 0.2s verses

13.7s. This is an attractive advantage for future sensitivity analysis calculations. The compu-

tational time for Jacobian construction was the largest at 93.2s. This is due to the fact that

automatic differentiation performs operations on full matrices. However, adjoint sensitivity anal-

ysis only requires that the Jacobian be constructed once for successive perturbation values, and

it is still possible to take advantage of the efficiency of adjoint calculations for a more intensive

109

www.manaraa.com

sensitivity analysis.

This multiphase adjoint analysis shows that automatic differentiation can be used to con-

struct Jacobian matrices and adjoint problems that return reasonable void fraction responses

with respect to perturbations in some but not all of the interphase momentum coefficients.

While some of the numerical behavior still requires investigation, the relative accuracy and

computational advantage of these adjoint approximations shows their potential viability as a

tool for robust sensitivity analyses.

5.2 Future Work

The future work of the adjoint capability presented in this thesis could be taken in many dif-

ferent directions. Because adjoint problem construction calculates derivatives automatically,

there is the possibility of adding a wide array of capability to the existing adiabatic multiphase

equations examined in this thesis. Any number of interphase momentum transfer models or tur-

bulence models could be included without significant change to the source code. The addition

of a boiling model would be a significant improvement of the existing adiabatic capability. This,

however, would require significant verification of the Jacobian matrix due to the highly nonlinear

nature of the subcooled nucleate boiling simulation. Particularly problematic for methodologies

that utilize a Jacobian is when the closure relationship is flow regime dependent, implying if a

parameter perturbation triggers a change in a closure relationship, the generated Jacobian is

not appropriate.

It was found that the Jacobian problem approximates velocities only when drag terms have

been removed from the pressure equation. The exact reason for this numerical phenomenon is

not understood, although it is hypothesized to be related to the predictor-corrector algorithm

used in the calculation of velocity. Future development can test alternate Jacobian matrix con-

struction that accounts for both predicted and corrected values and improve the linear approxi-

mation. Future work could also examine the numerical behavior of approximated perturbations

and understand why the perturbed case solution errors presented in this thesis behave as they

do. This includes increasing the understanding of sign, magnitude, and order of the solution

errors for not only dispersed phase void fraction but also other fields and closure relationships.

Future work could construct Jacobian matrices using OpenFOAM’s sparse LDU matrix

methodology instead of storing and operating on full matrices. Such a technique will require

the implicit understanding of the off-diagonal structure of finite volume operations and their

110

www.manaraa.com

dependence on other field variables. This is a significant undertaking since the algorithm to

perform such an operation is not obvious. Furthermore, it may significantly differ from the

automatic differentiation methodology because Jacobians will be constructed intuitively rather

than automatically.

Even if Jacobian matrices are full, the successful calculation of adjoint solutions could still

facilitate a more in depth sensitivity study of interphase momentum transfer terms. Due to

the computational efficiency of an adjoint approach, it is possible to perform data assimila-

tion using Bayesian statistics that can return frequency distributions of interphase momentum

transfer terms as derived from experimental data. Similar techniques use adjoint responses to

generate distributions of macroscopic cross sections for use in neutronics calculations [55]. Such

an analysis could be done at a fraction of the computational cost of full forward solutions.

111

www.manaraa.com

REFERENCES

[1] E Krepper, B Koncar, Y Egorov: “CFD Modeling of Subcooled Boiling - Concept, Vali-

dation and Application to Fuel Assembly Design”, Nuclear Engineering and Design, Vol.

237, pages 716-731, (2007).

[2] D Bestion: “Applicability of Two-Phase CFD to Nuclear Reactor Thermal Hydraulics and

Elaboration of Best Practice Guidelines” Nuclear Engineering and Design, Vol. 253, pages

311-321, (2012).

[3] HS Abdel-Khalik. “Adjoint-based sensitivity analysis for multi-component models”, Nu-

clear Engineering and Design, Vol. 245, pages 49-54, (2012).

[4] TM Wildey, EC Cyr, JN Shadid, R Pawlowski, T Smith. “A comparison of Adjoint and

Data-Centric Verification Techniques”, Sandia Report Unlimited Release, Sandia National

Laboratories, March (2013).

[5] R Roth, S Ulbrich. “A Discrete Adjoint Approach for the Optimization of Unsteady Tur-

bulent Flows”, Flow Turbulence and Combustion, Vol. 90, pages 763-783, (2013).

[6] D Cacuci: “Second-order ADJOINT Sensitivity analysis procedure (SO-ASAP) for comput-

ing exactly and efficiently first- and second-order sensitivities in large-scale linear systems:

II. Illustrative application to a paradigm particle diffusion problem”, Journal of Compu-

tational Physics, (2014).

[7] OpenFOAM - The Open Source CFD Toolbox, User Guide. Version 2.2.1. December (2012).

[8] Mesina, G. L.,“Reformulation RELAP5-3D in FORTRAN 95 and Results.” Proceedings of

the ASME 2010 Joint US-European Fluids Engineering Summer Meeting and 8th Inter-

national Conference on Nanochannels Microchannels, and Minichannels , FEDSM2010-

ICNMM2010, Montreal, Quebec, Canada, Aug 1-5 (2010).

112

www.manaraa.com

[9] Martin, R. P. “TRAC-B Thermal-Hydraulic Analysis of the Black Fox Boiling Water Reac-

tor.” National Technical Information Service, 77H-Reactor Engineering and Nuclear Power

Plants. Issue 9318, (1993).

[10] Areva NP Inc, COBRA-FLX: A Core Thermal-Hydraulics Analysis Code. ANP-10311NP.

pbadupws.nrc.gov, (2010).

[11] Sung, Y., R. L. Oelrich Jr., C. C. Lee, N. Ruiz-Esquide, M. Gambetta, and C. M. Mazufri,

“Benchmark of Subchannel Code VIPRE-W with PSBT Void and Temperature Test Data.”

Science and Technology of Nuclear Instalations, Vol. 2012, (2012).

[12] Cardoni, J. N., and Rizwan-uddin. “Nuclear Reactor Multi-Physics Simulations with Cou-

pled MCNP5 and Star-CCM+.” International Conference on Mathematics and Computa-

tional Methods Applied to Nuclear Science and Engineering, (2011).

[13] Christon, M. A., J. Bakosi, M. M. Francois, R. B. Lowrie, R. Nourgaliev. “Multiphase Flow

Analysis in Hydra-TH.” Conference: CASL Virtual Roundtable, (2012).

[14] HG Weller, “Derivation, Modelling and Solution of the Conditionally Averaged Two-Phase

Flow Equations”, OpenCFD, <http://www.opencfd.co.uk>. February (2005).

[15] Sussman, M., A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell and M. L. Welcome., “An

Adaptive Level Set Approach for Incompressible Two-Phase Flows.”, Journal of Compu-

tational Physics, Vol. 148, Issue 1, pages 81-124, (1999).

[16] Popinet, S. and Zaleski S. “A Front-Tracking Algorithm for the Accurate Representation

of Surface Tension.” International Journal of Numerical Methods in Fluids, Vol. 30 No.

775, (1999).

[17] Jackson, C. J., D. G. Cacuci, and H. B. Finnemann. “Dimensionally Adaptive Neu-

tron Kinetics for Multdimensional Reactor Safety Transients-I: New Features of RE-

LAP5/PANBOX.” Nuclear Science and Engineering Vol. 131 No. 2, pages 143-163, (1999).

113

www.manaraa.com

[18] Jackson, C. J., D. G. Cacuci, and H. B. Finnemann. “Dimensionally Adaptive Neutron Ki-

netics for Multdimensional Reactor Safety Transients-II: Dimensionally Adaptive Switching

Algorithms.” Nuclear Science and Engineering Vol. 131 No. 2, pages 164-186, (1999).

[19] Williams, Mark L. “Perturbation Theory for Nuclear Reactor Analysis.” CRC Handbook

of Nuclear Reactors Calculations Vol. 3, pages 63-188, (1987).

[20] Pironneau, O. “On Optimum Design in Fluid Mechanics.” Journal of Fluid Mechanics Vol.

64 part 1, pages 97-110, (1974).

[21] Pupko, V. Y. “Use of Adjoint Functions in Investigations of Heat Conduction and Transfer

Processes.” Inzhenerno-Fizicheskii Zhurnal Vol. 11 No. 2, pages 242-249, (1966).

[22] Dam, H. van, and J. E. Hoogenboom. “The Adjoint Space in Heat Transport Theory.”

International Journal of Heat and Mas Transfer Vol. 23, pages 349-353, (1980).

[23] Huang, C. H., and M. N. Ozisik. “Inverse Problem of Determining Unknown Wall Heat

Flux in Laminar Flow Through a Parallel Plate Duct.” Numerical Heat Transfer Part A

Vol. 21, pages 55-70, (1992).

[24] Huang, C., S. Wang. “A Three-Dimensional Inverse Heat Conduction Problem in Estimat-

ing Surface Heat Flux by Conjugate Gradient Method.” International Journal of Heat and

Mass Transfer, Vol. 42, pages 3387-3403, (1999).

[25] An Optimal Control Approach to A Posteriori Error Estimation in Finite Element Meth-

ods. Institut fur Angewandte Mathematik, Universitat Heidelburg, (2001).

[26] C Othmer: “A Continuous Adjoint Formulation for the Computation of Topological and

Surface Sensitivities of Ducted Flows”, International Journal for Numerical Methods in

Fluids, Vol. 58, pages 861-877, (2008).

[27] K Mani, DJ Mavriplis. “Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow

Problems with Deforming Meshes”, American Institute of Aeronautics and Astronautics

Journal, Vol. 46, Number 6, June (2008).

114

www.manaraa.com

[28] JD Jansen, OH Bosgra, PMJ Van den Hof. “Model-base control of multiphase flow in

subsurface oil reservoirs”, Journal of Process Control, Vol. 18, pages 846-855, (2008).

[29] JD Jansen. “Adjoint-Base Optimization of Multi-Phase Flow Through Porous Media - A

Review”, Computers & fluids, Vol. 46, pages 40-51, (2011).

[30] T Wildey, E Cyr, R Pawlowski, J Shadid, T Smith: “Adjoint Based a Posteriori Error

Estimation in Drekar:CFD ”, Sandia National Laboratories Unlimited Release, October

(2012).

[31] T Wildey, E Cyr, J Shadid, R Pawlowski, T Smith. “A Comparison of Adjoint and Data-

Centric Verification Techniques”, Sandia National Laboratories Unlimited Release, March

(2013).

[32] T Smith, J Shadid, R Pawlowski, E Cyr, and T Wildey: “Thermal Hydraulic Simulations,

Error Estimation, an Parameter Sensitivity Studies in Drekar:CFD”, Sandia National Lab-

oratories Unlimited Release, September (2013).

[33] L B Rall, G F Corliss. “An Introduction to Automatic Differentiation.”

[34] A Grienwank: “On Automatic Differentiation”, Argonne National Laboratory, November

(1988).

[35] CA Mader, JRRA Martins. “ADjoint: An Approach for the Rapid Development of Discrete

Adjoint Solvers”, American Institute of Aeronautics and Astronautics, Vol. 46, Number 4,

April (2008).

[36] The OpenFOAM Extend Project www.extend-project.de

[37] M Ishii and N Zuber. “Drag Coefficient and Relative Velocity in Bubbly, Droplet or Par-

ticulate Flows”. AIChE J., pages 25-843, (1979).

[38] H, Enwald, E Peirano, A-E Almstedt ”Eulerian Two-Phase Flow Theory Applied to Flu-

idization”. Int. J. Multiphase Flow, Vol. 22, Suppl, pages 21-66, (1996)

115

www.manaraa.com

[39] L. Schiller and Z. Naumann. “A Drag Coefficient Correlation”. Z. Ver. Deutsch. Ing., pages

77-318, (1935).

[40] Syamlal, M., Rogers, W. and O’Brien, T. J. (1993) MFIX documentation, Theory Guide.

Technical Note DOE/METC-94/1004. Morgantown, West Virginia, USA.

[41] H Rusche: ”Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase

Fractions”, PhD Thesis for Imperial College of Science, Technology, and Medicine, London,

England,(2002).

[42] D. Lucas and A. Tomiyama. “On the Role of the Lateral Lift Force in Poly-Dispersed

Bubbly Flows.” International Journal of Multiphase Flow, (2011).

[43] The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows,

(2004).

[44] A. D. Gosman, C. Lekakou, S. Politis, R. I. Issa, and M. K. Looney. “Multidimensional

Modeling of Turbulent Two-Phase Flow in Stirred Vessels”. AIChE J., pages 38-1946,

(1992).

[45] T Frank. “Advances in Computational Fluid Dynamics (CFD) of 3-Dimensional Gas-Liquid

Multiphase Flows.” In NAFEMS Seminar Simulation of Complex Flows (CFD), page 1,

Wiesbaden, Germany, (2005).

[46] R. Rzehak, E. Krepper, and C. Lifante. “Comparative Study of Wall-Force Models for the

Simulation of Bubbly Flows”. Nuclear Engineering and Design, (2012).

[47] B van Leer. “Towards the Ultimate Conservative Difference Scheme. IV A New Approach to

Numerical Convection”, Journal of Computational Physics, Vol. 23, pages 276-299, (1977).

[48] A Alali, Development and Validation of a New Solver Based on the Interfacial Area Trans-

port Equation for the Numerical Simulation of Sub-cooled Boiling with OpenFOAM CFD

Code for Nuclear Safety Applications. PhD Thesis, pages 33-52.

116

www.manaraa.com

[49] N Todreas, M Kazimi: Nuclear Systems, 2nd Edition, Vol. 1, pages 851-859. CRC Press,

(2012).

[50] Versteeg, H. K., and W. Malalasekera. An Introduction to Computational Fluid Dynamics:

The Finite Volume Method. Harlow, England: Pearson-Prentice Hall, 2007.

[51] Issa, R. I. “Solution of the Implicitly Discretised Fluid Flow Equations by Operator-

Splitting.” Journal of Computational Physics Vol 62, pages 40-65, (1985).

[52] D Drew, R T Lahey, “Application of General Constitutive Principles to the Derivation of

Multidimensional Two-Phase Flow Equations”, International Journal of Multiphase Flow,

Vol. 5, pages 243-264, (1979).

[53] HK Versteeg, W Malakasekera: An Introduction to Computational Fluid Dynamics, 2nd

Edition, Prentice Hall, Essex, England (2007).

[54] H Jasak. 6th OpenFOAM Workshop, Penn State University, June 2011.

[55] A Hernandez-Solis. “Uncertainty and Sensitivity analysis Applied to LWT Neutronic and

Thermal-Hydraulic Calculations”. Gteborg : Chalmers University of Technology, (2012).

[56] E Mictha: “Modeling of Subcooled Nucleate Boiling with OpenFOAM”, Masters of Science

Thesis for the Royal Institute of Technology, Stockholm, Sweden, February (2011).

[57] A Ghione: “Development and Validation of a Two-Phase CFD Model Using OpenFOAM”,

Masters of Science Thesis for the Royal Institute of Technology, Stockholm, Sweden, De-

cember (2012).

[58] R Stengel: Stochastic Optimal Control, Theory and Application, John Wiley & Sons, Inc,

Princeton, NJ (1986).

[59] H Schlichting: Boundary Layer Theory, 7th Edition, McGraw Hill, Inc. (1987).

[60] F Incropera, D Dewitt, T Bergman, A Lavine: Fundamentals of Heat and Mass Transfer,

6th Edition, John Wiley & Sons, Hoboken, NJ (2007).

117

www.manaraa.com

[61] CM Rhie, W L Chow: “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing

Edge Separation”, AIAA Journal, Vol. 21, No. 11, November (1983).

[62] R Kunz, B Siebert, W K Cope, N Foster, S Antal, S Ettorre: ”A Coupled Phasic Ex-

change Algorithm for Three-Dimensional Multi-Field Analysis of Heated Flows with Mass

Transfer”, Computers and Fluids, Vol. 27, Number 7, pages 741-768, (1998).

[63] SM Damian. “High Resolution Schemes Implementation in OpenFOAM”, Simulation

Internal Report.

<https://openfoamwiki.net/index.php/OpenFOAM_guide/NVD_TVD_formulation>.

March (2007).

[64] N Dinh, R Nourgaliev. “An Intial VU-Assessed Code Development Effort”, Idaho National

Laboratory, December (2010).

[65] ML Williams. CFC Handbook of Nuclear Reactors Calculations. “III. Adjoint Operators -

The Differential and Variational Methods”, Vol. III, pages 72-84, (1988).

[66] E Furbo. “Evaluation of RANS Turbulence Models for Flow Problems with Significant

Impact of Boundary Layers”, Masters of Science Thesis, Uppsalal Universitet, December

(2010).

[67] MS Darwish, “A New High-Resolution Scheme Based on the Normalized Variable For-

mulation”, Numerical Heat Transfer, Part B: Fundamentals: An International Journal of

Computation and Methodology, Vol. 24, pages 353-371, (1993).

[68] SK Nadarajah, A Jameson, “A Comparison of the Continuous and Discrete Adjoint Ap-

proach to Automatic Aerodynamic Optimization”, American Institute of Aeronautics and

Astronautics, (1999).

[69] N Safiran, U Naumann. “Toward Adjoint OpenFOAM”, Department of Computer Science

of RWTH Aachen University, Germany, July (2011).

118

www.manaraa.com

[70] B Yu, WQ Tao, JJ Wei, Y Kawaguchi, T Tagawa, H Ozoe. “Discussion on Momentum In-

terpolation Method for Collocated Grids of Incompressible Flow”, Numerical Heat Tranfer,

Part B, Vol. 42, pages 141-166, (2002).

[71] PM Morse, H Feshback. Methods of Theoretical Physics. New York: McGraw-Hill, (1953).

[72] Petersdorff, T. Von, and R. Leis. “Boundary Integral Equations for Mixed Dirichlet, Neu-

mann and Transmission Problems.” Mathematical Methods in the Applied Sciences Vol.

11, pages 185-213, (1989).

[73] Carey, V., D. Estep, A. Johansson, M. Larson, and S. Tavener. “Blockwise Adaptivity for

Time Dependent Problems Based on Coarse Scale Adjoint Solutions.” SIAM Journal on

Scientific Computing Vol. 342 No. 4, (2010).

[74] Estep, D., S. Tavener, and T. Wildey. “A Posteriori Analysis and Improved Accuracy for an

Operator Decomposition Solution of a Conjugate Heat Transfer Problem.” SIAM Journal

on Numerical Analysis Vol. 46 No. 4, pages 2068-2089, (2008).

[75] Estep, D., V. Ginting, D. Ropp, J. N. Shadid, and S. Tavener. “An A Posteriori - A Priori

Analysis of Multiscale Operator Splitting.” Siam Journal on Numerical Analysis Vol 46

No. 3, pages 1116-1146, (2008).

[76] Estep, D. M. Pernice, D. Pham, S. Tavener, and H. Wang. “A Posteriori Error Analy-

sis of a Cell-Centered Finite Vol. Method for Semilinear Elliptic Problems.” Journal of

Computational and Applied Mathematics Vol. 233, pages 459-472, (2009).

[77] Estep, D. M. Pernice, D. Pham, S. Tavener, and H. Wang. “A Posteriori Error Analysis

for a Cut Cell Finite Vol. Method.” Computational Methods in Applied Mechanics and

Engineering Vol. 200, pages 2768-2781, (2011).

[78] Yen, D. H. Y., J. V. Beck. “Green’s Functions for Non-Self-Adjoint Problems in Heat

Conduction with Steady Motion.” Journal of Engineering Mathematics Vol. 57, pages

115-132, (2007).

119

www.manaraa.com

[79] Jarny, Y., M. N. Ozisik, and J. P. Bardon. “A General Optimization Method Using Adjoint

Equation for Solving Multidimensional Inverse Heat Conduction.” International Journal

of Heat and Mass Transfer Vol. 34 No. 11, 2911-2919 (1991).

120

